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Disk Storage, Basic File
Structures, and Hashing

Databases are stored physically as files of records,
which are typically stored on magnetic disks. This

chapter and the next deal with the organization of databases in storage and the tech-
niques for accessing them efficiently using various algorithms, some of which
require auxiliary data structures called indexes. These structures are often referred
to as physical database file structures, and are at the physical level of the three-
schema architecture described in Chapter 2. We start in Section 17.1 by introducing
the concepts of computer storage hierarchies and how they are used in database sys-
tems. Section 17.2 is devoted to a description of magnetic disk storage devices and
their characteristics, and we also briefly describe magnetic tape storage devices.
After discussing different storage technologies, we turn our attention to the meth-
ods for physically organizing data on disks. Section 17.3 covers the technique of
double buffering, which is used to speed retrieval of multiple disk blocks. In Section
17.4 we discuss various ways of formatting and storing file records on disk. Section
17.5 discusses the various types of operations that are typically applied to file
records. We present three primary methods for organizing file records on disk:
unordered records, in Section 17.6; ordered records, in Section 17.7; and hashed
records, in Section 17.8.

Section 17.9 briefly introduces files of mixed records and other primary methods
for organizing records, such as B-trees. These are particularly relevant for storage of
object-oriented databases, which we discussed in Chapter 11. Section 17.10
describes RAID (Redundant Arrays of Inexpensive (or Independent) Disks)—a
data storage system architecture that is commonly used in large organizations for
better reliability and performance. Finally, in Section 17.11 we describe three devel-
opments in the storage systems area: storage area networks (SAN), network-

17chapter 17
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attached storage (NAS), and iSCSI (Internet SCSI—Small Computer System
Interface), the latest technology, which makes storage area networks more afford-
able without the use of the Fiber Channel infrastructure and hence is getting very
wide acceptance in industry. Section 17.12 summarizes the chapter. In Chapter 18
we discuss techniques for creating auxiliary data structures, called indexes, which
speed up the search for and retrieval of records. These techniques involve storage of
auxiliary data, called index files, in addition to the file records themselves.

Chapters 17 and 18 may be browsed through or even omitted by readers who have
already studied file organizations and indexing in a separate course. The material
covered here, in particular Sections 17.1 through 17.8, is necessary for understand-
ing Chapters 19 and 20, which deal with query processing and optimization, and
database tuning for improving performance of queries.

17.1 Introduction
The collection of data that makes up a computerized database must be stored phys-
ically on some computer storage medium. The DBMS software can then retrieve,
update, and process this data as needed. Computer storage media form a storage
hierarchy that includes two main categories:

■ Primary storage. This category includes storage media that can be operated
on directly by the computer’s central processing unit (CPU), such as the com-
puter’s main memory and smaller but faster cache memories. Primary stor-
age usually provides fast access to data but is of limited storage capacity.
Although main memory capacities have been growing rapidly in recent
years, they are still more expensive and have less storage capacity than sec-
ondary and tertiary storage devices.

■ Secondary and tertiary storage. This category includes magnetic disks,
optical disks (CD-ROMs, DVDs, and other similar storage media), and
tapes. Hard-disk drives are classified as secondary storage, whereas remov-
able media such as optical disks and tapes are considered tertiary storage.
These devices usually have a larger capacity, cost less, and provide slower
access to data than do primary storage devices. Data in secondary or tertiary
storage cannot be processed directly by the CPU; first it must be copied into
primary storage and then processed by the CPU.

We first give an overview of the various storage devices used for primary and sec-
ondary storage in Section 17.1.1 and then discuss how databases are typically han-
dled in the storage hierarchy in Section 17.1.2.

17.1.1 Memory Hierarchies and Storage Devices
In a modern computer system, data resides and is transported throughout a hierar-
chy of storage media. The highest-speed memory is the most expensive and is there-
fore available with the least capacity. The lowest-speed memory is offline tape
storage, which is essentially available in indefinite storage capacity.
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At the primary storage level, the memory hierarchy includes at the most expensive
end, cache memory, which is a static RAM (Random Access Memory). Cache mem-
ory is typically used by the CPU to speed up execution of program instructions
using techniques such as prefetching and pipelining. The next level of primary stor-
age is DRAM (Dynamic RAM), which provides the main work area for the CPU for
keeping program instructions and data. It is popularly called main memory. The
advantage of DRAM is its low cost, which continues to decrease; the drawback is its
volatility1 and lower speed compared with static RAM. At the secondary and tertiary
storage level, the hierarchy includes magnetic disks, as well as mass storage in the
form of CD-ROM (Compact Disk–Read-Only Memory) and DVD (Digital Video
Disk or Digital Versatile Disk) devices, and finally tapes at the least expensive end of
the hierarchy. The storage capacity is measured in kilobytes (Kbyte or 1000 bytes),
megabytes (MB or 1 million bytes), gigabytes (GB or 1 billion bytes), and even ter-
abytes (1000 GB). The word petabyte (1000 terabytes or 10**15 bytes) is now
becoming relevant in the context of very large repositories of data in physics,
astronomy, earth sciences, and other scientific applications.

Programs reside and execute in DRAM. Generally, large permanent databases reside
on secondary storage, (magnetic disks), and portions of the database are read into
and written from buffers in main memory as needed. Nowadays, personal comput-
ers and workstations have large main memories of hundreds of megabytes of RAM
and DRAM, so it is becoming possible to load a large part of the database into main
memory. Eight to 16 GB of main memory on a single server is becoming common-
place. In some cases, entire databases can be kept in main memory (with a backup
copy on magnetic disk), leading to main memory databases; these are particularly
useful in real-time applications that require extremely fast response times. An
example is telephone switching applications, which store databases that contain
routing and line information in main memory.

Between DRAM and magnetic disk storage, another form of memory, flash mem-
ory, is becoming common, particularly because it is nonvolatile. Flash memories are
high-density, high-performance memories using EEPROM (Electrically Erasable
Programmable Read-Only Memory) technology. The advantage of flash memory is
the fast access speed; the disadvantage is that an entire block must be erased and
written over simultaneously. Flash memory cards are appearing as the data storage
medium in appliances with capacities ranging from a few megabytes to a few giga-
bytes. These are appearing in cameras, MP3 players, cell phones, PDAs, and so on.
USB (Universal Serial Bus) flash drives have become the most portable medium for
carrying data between personal computers; they have a flash memory storage device
integrated with a USB interface.

CD-ROM (Compact Disk – Read Only Memory) disks store data optically and are
read by a laser. CD-ROMs contain prerecorded data that cannot be overwritten.
WORM (Write-Once-Read-Many) disks are a form of optical storage used for

1Volatile memory typically loses its contents in case of a power outage, whereas nonvolatile memory
does not.
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archiving data; they allow data to be written once and read any number of times
without the possibility of erasing. They hold about half a gigabyte of data per disk
and last much longer than magnetic disks.2 Optical jukebox memories use an array
of CD-ROM platters, which are loaded onto drives on demand. Although optical
jukeboxes have capacities in the hundreds of gigabytes, their retrieval times are in
the hundreds of milliseconds, quite a bit slower than magnetic disks. This type of
storage is continuing to decline because of the rapid decrease in cost and increase in
capacities of magnetic disks. The DVD is another standard for optical disks allowing
4.5 to 15 GB of storage per disk. Most personal computer disk drives now read CD-
ROM and DVD disks. Typically, drives are CD-R (Compact Disk Recordable) that
can create CD-ROMs and audio CDs (Compact Disks), as well as record on DVDs.

Finally, magnetic tapes are used for archiving and backup storage of data. Tape
jukeboxes—which contain a bank of tapes that are catalogued and can be automat-
ically loaded onto tape drives—are becoming popular as tertiary storage to hold
terabytes of data. For example, NASA’s EOS (Earth Observation Satellite) system
stores archived databases in this fashion.

Many large organizations are already finding it normal to have terabyte-sized data-
bases. The term very large database can no longer be precisely defined because disk
storage capacities are on the rise and costs are declining. Very soon the term may be
reserved for databases containing tens of terabytes.

17.1.2 Storage of Databases
Databases typically store large amounts of data that must persist over long periods
of time, and hence is often referred to as persistent data. Parts of this data are
accessed and processed repeatedly during this period. This contrasts with the notion
of transient data that persist for only a limited time during program execution.
Most databases are stored permanently (or persistently) on magnetic disk secondary
storage, for the following reasons:

■ Generally, databases are too large to fit entirely in main memory.

■ The circumstances that cause permanent loss of stored data arise less fre-
quently for disk secondary storage than for primary storage. Hence, we refer
to disk—and other secondary storage devices—as nonvolatile storage,
whereas main memory is often called volatile storage.

■ The cost of storage per unit of data is an order of magnitude less for disk sec-
ondary storage than for primary storage.

Some of the newer technologies—such as optical disks, DVDs, and tape juke-
boxes—are likely to provide viable alternatives to the use of magnetic disks. In the
future, databases may therefore reside at different levels of the memory hierarchy
from those described in Section 17.1.1. However, it is anticipated that magnetic

2Their rotational speeds are lower (around 400 rpm), giving higher latency delays and low transfer rates
(around 100 to 200 KB/second).
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disks will continue to be the primary medium of choice for large databases for years
to come. Hence, it is important to study and understand the properties and charac-
teristics of magnetic disks and the way data files can be organized on disk in order to
design effective databases with acceptable performance.

Magnetic tapes are frequently used as a storage medium for backing up databases
because storage on tape costs even less than storage on disk. However, access to data
on tape is quite slow. Data stored on tapes is offline; that is, some intervention by an
operator—or an automatic loading device—to load a tape is needed before the data
becomes available. In contrast, disks are online devices that can be accessed directly
at any time.

The techniques used to store large amounts of structured data on disk are impor-
tant for database designers, the DBA, and implementers of a DBMS. Database
designers and the DBA must know the advantages and disadvantages of each stor-
age technique when they design, implement, and operate a database on a specific
DBMS. Usually, the DBMS has several options available for organizing the data. The
process of physical database design involves choosing the particular data organiza-
tion techniques that best suit the given application requirements from among the
options. DBMS system implementers must study data organization techniques so
that they can implement them efficiently and thus provide the DBA and users of the
DBMS with sufficient options.

Typical database applications need only a small portion of the database at a time for
processing. Whenever a certain portion of the data is needed, it must be located on
disk, copied to main memory for processing, and then rewritten to the disk if the
data is changed. The data stored on disk is organized as files of records. Each record
is a collection of data values that can be interpreted as facts about entities, their
attributes, and their relationships. Records should be stored on disk in a manner
that makes it possible to locate them efficiently when they are needed.

There are several primary file organizations, which determine how the file records
are physically placed on the disk, and hence how the records can be accessed. A heap file
(or unordered file) places the records on disk in no particular order by appending
new records at the end of the file, whereas a sorted file (or sequential file) keeps the
records ordered by the value of a particular field (called the sort key). A hashed file
uses a hash function applied to a particular field (called the hash key) to determine
a record’s placement on disk. Other primary file organizations, such as B-trees, use
tree structures. We discuss primary file organizations in Sections 17.6 through 17.9.
A secondary organization or auxiliary access structure allows efficient access to
file records based on alternate fields than those that have been used for the primary
file organization. Most of these exist as indexes and will be discussed in Chapter 18.

17.2 Secondary Storage Devices
In this section we describe some characteristics of magnetic disk and magnetic tape
storage devices. Readers who have already studied these devices may simply browse
through this section.
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Figure 17.1
(a) A single-sided disk with read/write hardware.
(b) A disk pack with read/write hardware.

17.2.1 Hardware Description of Disk Devices
Magnetic disks are used for storing large amounts of data. The most basic unit of
data on the disk is a single bit of information. By magnetizing an area on disk in cer-
tain ways, one can make it represent a bit value of either 0 (zero) or 1 (one). To code
information, bits are grouped into bytes (or characters). Byte sizes are typically 4 to
8 bits, depending on the computer and the device. We assume that one character is
stored in a single byte, and we use the terms byte and character interchangeably. The
capacity of a disk is the number of bytes it can store, which is usually very large.
Small floppy disks used with microcomputers typically hold from 400 KB to 1.5
MB; they are rapidly going out of circulation. Hard disks for personal computers
typically hold from several hundred MB up to tens of GB; and large disk packs used
with servers and mainframes have capacities of hundreds of GB. Disk capacities
continue to grow as technology improves.

Whatever their capacity, all disks are made of magnetic material shaped as a thin
circular disk, as shown in Figure 17.1(a), and protected by a plastic or acrylic cover.
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Track(a) Sector (arc of track)

(b)

Three sectors

Two sectors
One sector

Figure 17.2
Different sector organ-
izations on disk. (a)
Sectors subtending a
fixed angle. (b)
Sectors maintaining a
uniform recording 
density.

A disk is single-sided if it stores information on one of its surfaces only and double-
sided if both surfaces are used. To increase storage capacity, disks are assembled into
a disk pack, as shown in Figure 17.1(b), which may include many disks and there-
fore many surfaces. Information is stored on a disk surface in concentric circles of
small width,3 each having a distinct diameter. Each circle is called a track. In disk
packs, tracks with the same diameter on the various surfaces are called a cylinder
because of the shape they would form if connected in space. The concept of a cylin-
der is important because data stored on one cylinder can be retrieved much faster
than if it were distributed among different cylinders.

The number of tracks on a disk ranges from a few hundred to a few thousand, and
the capacity of each track typically ranges from tens of Kbytes to 150 Kbytes.
Because a track usually contains a large amount of information, it is divided into
smaller blocks or sectors. The division of a track into sectors is hard-coded on the
disk surface and cannot be changed. One type of sector organization, as shown in
Figure 17.2(a), calls a portion of a track that subtends a fixed angle at the center a
sector. Several other sector organizations are possible, one of which is to have the
sectors subtend smaller angles at the center as one moves away, thus maintaining a
uniform density of recording, as shown in Figure 17.2(b). A technique called ZBR
(Zone Bit Recording) allows a range of cylinders to have the same number of sectors
per arc. For example, cylinders 0–99 may have one sector per track, 100–199 may
have two per track, and so on. Not all disks have their tracks divided into sectors.

The division of a track into equal-sized disk blocks (or pages) is set by the operat-
ing system during disk formatting (or initialization). Block size is fixed during ini-
tialization and cannot be changed dynamically. Typical disk block sizes range from
512 to 8192 bytes. A disk with hard-coded sectors often has the sectors subdivided
into blocks during initialization. Blocks are separated by fixed-size interblock gaps,
which include specially coded control information written during disk initializa-
tion. This information is used to determine which block on the track follows each

3In some disks, the circles are now connected into a kind of continuous spiral.
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Table 17.1 Specifications of Typical High-End Cheetah Disks from Seagate

Description Cheetah 15K.6 Cheetah NS 10K
Model Number ST3450856SS/FC ST3400755FC
Height 25.4 mm 26.11 mm
Width 101.6 mm 101.85 mm
Length 146.05 mm 147 mm
Weight 0.709 kg 0.771 kg

Capacity
Formatted Capacity 450 Gbytes 400 Gbytes

Configuration
Number of disks (physical) 4 4
Number of heads (physical) 8 8

Performance

Transfer Rates
Internal Transfer Rate (min) 1051 Mb/sec
Internal Transfer Rate (max) 2225 Mb/sec 1211 Mb/sec
Mean Time Between Failure (MTBF) 1.4 M hours

Seek Times
Avg. Seek Time (Read) 3.4 ms (typical) 3.9 ms (typical)
Avg. Seek Time (Write) 3.9 ms (typical) 4.2 ms (typical)
Track-to-track, Seek, Read 0.2 ms (typical) 0.35 ms (typical)
Track-to-track, Seek, Write 0.4 ms (typical) 0.35 ms (typical)
Average Latency 2 ms 2.98 msec

Courtesy Seagate Technology

interblock gap. Table 17.1 illustrates the specifications of typical disks used on large
servers in industry. The 10K and 15K prefixes on disk names refer to the rotational
speeds in rpm (revolutions per minute).

There is continuous improvement in the storage capacity and transfer rates associ-
ated with disks; they are also progressively getting cheaper—currently costing only a
fraction of a dollar per megabyte of disk storage. Costs are going down so rapidly
that costs as low 0.025 cent/MB—which translates to $0.25/GB and $250/TB—are
already here.

A disk is a random access addressable device. Transfer of data between main memory
and disk takes place in units of disk blocks. The hardware address of a block—a
combination of a cylinder number, track number (surface number within the cylin-
der on which the track is located), and block number (within the track) is supplied
to the disk I/O (input/output) hardware. In many modern disk drives, a single num-
ber called LBA (Logical Block Address), which is a number between 0 and n (assum-
ing the total capacity of the disk is n + 1 blocks), is mapped automatically to the
right block by the disk drive controller. The address of a buffer—a contiguous



reserved area in main storage that holds one disk block—is also provided. For a
read command, the disk block is copied into the buffer; whereas for a write com-
mand, the contents of the buffer are copied into the disk block. Sometimes several
contiguous blocks, called a cluster, may be transferred as a unit. In this case, the
buffer size is adjusted to match the number of bytes in the cluster.

The actual hardware mechanism that reads or writes a block is the disk read/write
head, which is part of a system called a disk drive. A disk or disk pack is mounted in
the disk drive, which includes a motor that rotates the disks. A read/write head
includes an electronic component attached to a mechanical arm. Disk packs with
multiple surfaces are controlled by several read/write heads—one for each surface,
as shown in Figure 17.1(b). All arms are connected to an actuator attached to
another electrical motor, which moves the read/write heads in unison and positions
them precisely over the cylinder of tracks specified in a block address.

Disk drives for hard disks rotate the disk pack continuously at a constant speed
(typically ranging between 5,400 and 15,000 rpm). Once the read/write head is
positioned on the right track and the block specified in the block address moves
under the read/write head, the electronic component of the read/write head is acti-
vated to transfer the data. Some disk units have fixed read/write heads, with as many
heads as there are tracks. These are called fixed-head disks, whereas disk units with
an actuator are called movable-head disks. For fixed-head disks, a track or cylinder
is selected by electronically switching to the appropriate read/write head rather than
by actual mechanical movement; consequently, it is much faster. However, the cost
of the additional read/write heads is quite high, so fixed-head disks are not com-
monly used.

A disk controller, typically embedded in the disk drive, controls the disk drive and
interfaces it to the computer system. One of the standard interfaces used today for
disk drives on PCs and workstations is called SCSI (Small Computer System
Interface). The controller accepts high-level I/O commands and takes appropriate
action to position the arm and causes the read/write action to take place. To transfer
a disk block, given its address, the disk controller must first mechanically position
the read/write head on the correct track. The time required to do this is called the
seek time. Typical seek times are 5 to 10 msec on desktops and 3 to 8 msecs on
servers. Following that, there is another delay—called the rotational delay or
latency—while the beginning of the desired block rotates into position under the
read/write head. It depends on the rpm of the disk. For example, at 15,000 rpm, the
time per rotation is 4 msec and the average rotational delay is the time per half rev-
olution, or 2 msec. At 10,000 rpm the average rotational delay increases to 3 msec.
Finally, some additional time is needed to transfer the data; this is called the block
transfer time. Hence, the total time needed to locate and transfer an arbitrary
block, given its address, is the sum of the seek time, rotational delay, and block
transfer time. The seek time and rotational delay are usually much larger than the
block transfer time. To make the transfer of multiple blocks more efficient, it is
common to transfer several consecutive blocks on the same track or cylinder. This
eliminates the seek time and rotational delay for all but the first block and can result

17.2 Secondary Storage Devices 591
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in a substantial saving of time when numerous contiguous blocks are transferred.
Usually, the disk manufacturer provides a bulk transfer rate for calculating the time
required to transfer consecutive blocks. Appendix B contains a discussion of these
and other disk parameters.

The time needed to locate and transfer a disk block is in the order of milliseconds,
usually ranging from 9 to 60 msec. For contiguous blocks, locating the first block
takes from 9 to 60 msec, but transferring subsequent blocks may take only 0.4 to 2
msec each. Many search techniques take advantage of consecutive retrieval of blocks
when searching for data on disk. In any case, a transfer time in the order of millisec-
onds is considered quite high compared with the time required to process data in
main memory by current CPUs. Hence, locating data on disk is a major bottleneck in
database applications. The file structures we discuss here and in Chapter 18 attempt
to minimize the number of block transfers needed to locate and transfer the required
data from disk to main memory. Placing “related information” on contiguous
blocks is the basic goal of any storage organization on disk.

17.2.2 Magnetic Tape Storage Devices
Disks are random access secondary storage devices because an arbitrary disk block
may be accessed at random once we specify its address. Magnetic tapes are sequen-
tial access devices; to access the nth block on tape, first we must scan the preceding
n – 1 blocks. Data is stored on reels of high-capacity magnetic tape, somewhat sim-
ilar to audiotapes or videotapes. A tape drive is required to read the data from or
write the data to a tape reel. Usually, each group of bits that forms a byte is stored
across the tape, and the bytes themselves are stored consecutively on the tape.

A read/write head is used to read or write data on tape. Data records on tape are also
stored in blocks—although the blocks may be substantially larger than those for
disks, and interblock gaps are also quite large. With typical tape densities of 1600 to
6250 bytes per inch, a typical interblock gap4 of 0.6 inch corresponds to 960 to 3750
bytes of wasted storage space. It is customary to group many records together in one
block for better space utilization.

The main characteristic of a tape is its requirement that we access the data blocks in
sequential order. To get to a block in the middle of a reel of tape, the tape is
mounted and then scanned until the required block gets under the read/write head.
For this reason, tape access can be slow and tapes are not used to store online data,
except for some specialized applications. However, tapes serve a very important
function—backing up the database. One reason for backup is to keep copies of disk
files in case the data is lost due to a disk crash, which can happen if the disk
read/write head touches the disk surface because of mechanical malfunction. For
this reason, disk files are copied periodically to tape. For many online critical appli-
cations, such as airline reservation systems, to avoid any downtime, mirrored sys-
tems are used to keep three sets of identical disks—two in online operation and one

4Called interrecord gaps in tape terminology.
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as backup. Here, offline disks become a backup device. The three are rotated so that
they can be switched in case there is a failure on one of the live disk drives. Tapes can
also be used to store excessively large database files. Database files that are seldom
used or are outdated but required for historical record keeping can be archived on
tape. Originally, half-inch reel tape drives were used for data storage employing the
so-called 9 track tapes. Later, smaller 8-mm magnetic tapes (similar to those used in
camcorders) that can store up to 50 GB, as well as 4-mm helical scan data cartridges
and writable CDs and DVDs, became popular media for backing up data files from
PCs and workstations. They are also used for storing images and system libraries.

Backing up enterprise databases so that no transaction information is lost is a major
undertaking. Currently, tape libraries with slots for several hundred cartridges are
used with Digital and Superdigital Linear Tapes (DLTs and SDLTs) having capacities
in hundreds of gigabytes that record data on linear tracks. Robotic arms are used to
write on multiple cartridges in parallel using multiple tape drives with automatic
labeling software to identify the backup cartridges. An example of a giant library is
the SL8500 model of Sun Storage Technology that can store up to 70 petabytes
(petabyte = 1000 TB) of data using up to 448 drives with a maximum throughput
rate of 193.2 TB/hour. We defer the discussion of disk storage technology called
RAID, and of storage area networks, network-attached storage, and iSCSI storage
systems to the end of the chapter.

17.3 Buffering of Blocks
When several blocks need to be transferred from disk to main memory and all the
block addresses are known, several buffers can be reserved in main memory to
speed up the transfer. While one buffer is being read or written, the CPU can
process data in the other buffer because an independent disk I/O processor (con-
troller) exists that, once started, can proceed to transfer a data block between mem-
ory and disk independent of and in parallel to CPU processing.

Figure 17.3 illustrates how two processes can proceed in parallel. Processes A and B
are running concurrently in an interleaved fashion, whereas processes C and D are
running concurrently in a parallel fashion. When a single CPU controls multiple
processes, parallel execution is not possible. However, the processes can still run
concurrently in an interleaved way. Buffering is most useful when processes can run
concurrently in a parallel fashion, either because a separate disk I/O processor is
available or because multiple CPU processors exist.

Figure 17.4 illustrates how reading and processing can proceed in parallel when the
time required to process a disk block in memory is less than the time required to
read the next block and fill a buffer. The CPU can start processing a block once its
transfer to main memory is completed; at the same time, the disk I/O processor can
be reading and transferring the next block into a different buffer. This technique is
called double buffering and can also be used to read a continuous stream of blocks
from disk to memory. Double buffering permits continuous reading or writing of
data on consecutive disk blocks, which eliminates the seek time and rotational delay
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Use of two buffers, A and B, for reading from disk.

for all but the first block transfer. Moreover, data is kept ready for processing, thus
reducing the waiting time in the programs.

17.4 Placing File Records on Disk
In this section, we define the concepts of records, record types, and files. Then we
discuss techniques for placing file records on disk.

17.4.1 Records and Record Types
Data is usually stored in the form of records. Each record consists of a collection of
related data values or items, where each value is formed of one or more bytes and
corresponds to a particular field of the record. Records usually describe entities and
their attributes. For example, an EMPLOYEE record represents an employee entity,
and each field value in the record specifies some attribute of that employee, such as
Name, Birth_date, Salary, or Supervisor. A collection of field names and their corre-
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sponding data types constitutes a record type or record format definition. A data
type, associated with each field, specifies the types of values a field can take.

The data type of a field is usually one of the standard data types used in program-
ming. These include numeric (integer, long integer, or floating point), string of
characters (fixed-length or varying), Boolean (having 0 and 1 or TRUE and FALSE
values only), and sometimes specially coded date and time data types. The number
of bytes required for each data type is fixed for a given computer system. An integer
may require 4 bytes, a long integer 8 bytes, a real number 4 bytes, a Boolean 1 byte,
a date 10 bytes (assuming a format of YYYY-MM-DD), and a fixed-length string of
k characters k bytes. Variable-length strings may require as many bytes as there are
characters in each field value. For example, an EMPLOYEE record type may be
defined—using the C programming language notation—as the following structure:

struct employee{
char name[30];
char ssn[9];
int salary;
int job_code;
char department[20];

} ;

In some database applications, the need may arise for storing data items that consist
of large unstructured objects, which represent images, digitized video or audio
streams, or free text. These are referred to as BLOBs (binary large objects). A BLOB
data item is typically stored separately from its record in a pool of disk blocks, and a
pointer to the BLOB is included in the record.

17.4.2 Files, Fixed-Length Records, 
and Variable-Length Records

A file is a sequence of records. In many cases, all records in a file are of the same
record type. If every record in the file has exactly the same size (in bytes), the file is
said to be made up of fixed-length records. If different records in the file have dif-
ferent sizes, the file is said to be made up of variable-length records. A file may have
variable-length records for several reasons:

■ The file records are of the same record type, but one or more of the fields are
of varying size (variable-length fields). For example, the Name field of
EMPLOYEE can be a variable-length field.

■ The file records are of the same record type, but one or more of the fields
may have multiple values for individual records; such a field is called a
repeating field and a group of values for the field is often called a repeating
group.

■ The file records are of the same record type, but one or more of the fields are
optional; that is, they may have values for some but not all of the file records
(optional fields).
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Figure 17.5
Three record storage formats. (a) A fixed-length record with six
fields and size of 71 bytes. (b) A record with two variable-length
fields and three fixed-length fields. (c) A variable-field record with
three types of separator characters.

■ The file contains records of different record types and hence of varying size
(mixed file). This would occur if related records of different types were
clustered (placed together) on disk blocks; for example, the GRADE_REPORT
records of a particular student may be placed following that STUDENT’s
record.

The fixed-length EMPLOYEE records in Figure 17.5(a) have a record size of 71 bytes.
Every record has the same fields, and field lengths are fixed, so the system can iden-
tify the starting byte position of each field relative to the starting position of the
record. This facilitates locating field values by programs that access such files. Notice
that it is possible to represent a file that logically should have variable-length records
as a fixed-length records file. For example, in the case of optional fields, we could
have every field included in every file record but store a special NULL value if no value
exists for that field. For a repeating field, we could allocate as many spaces in each
record as the maximum possible number of occurrences of the field. In either case,
space is wasted when certain records do not have values for all the physical spaces
provided in each record. Now we consider other options for formatting records of a
file of variable-length records.
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For variable-length fields, each record has a value for each field, but we do not know
the exact length of some field values. To determine the bytes within a particular
record that represent each field, we can use special separator characters (such as ? or
% or $)—which do not appear in any field value—to terminate variable-length
fields, as shown in Figure 17.5(b), or we can store the length in bytes of the field in
the record, preceding the field value.

A file of records with optional fields can be formatted in different ways. If the total
number of fields for the record type is large, but the number of fields that actually
appear in a typical record is small, we can include in each record a sequence of
<field-name, field-value> pairs rather than just the field values. Three types of sep-
arator characters are used in Figure 17.5(c), although we could use the same separa-
tor character for the first two purposes—separating the field name from the field
value and separating one field from the next field. A more practical option is to
assign a short field type code—say, an integer number—to each field and include in
each record a sequence of <field-type, field-value> pairs rather than <field-name,
field-value> pairs.

A repeating field needs one separator character to separate the repeating values of
the field and another separator character to indicate termination of the field.
Finally, for a file that includes records of different types, each record is preceded by a
record type indicator. Understandably, programs that process files of variable-
length records—which are usually part of the file system and hence hidden from the
typical programmers—need to be more complex than those for fixed-length
records, where the starting position and size of each field are known and fixed.5

17.4.3 Record Blocking and Spanned 
versus Unspanned Records

The records of a file must be allocated to disk blocks because a block is the unit of
data transfer between disk and memory. When the block size is larger than the
record size, each block will contain numerous records, although some files may have
unusually large records that cannot fit in one block. Suppose that the block size is B
bytes. For a file of fixed-length records of size R bytes, with B ≥ R, we can fit bfr =
⎣B/R⎦ records per block, where the ⎣(x)⎦ (floor function) rounds down the number x
to an integer. The value bfr is called the blocking factor for the file. In general, R
may not divide B exactly, so we have some unused space in each block equal to

B − (bfr * R) bytes

To utilize this unused space, we can store part of a record on one block and the rest
on another. A pointer at the end of the first block points to the block containing the
remainder of the record in case it is not the next consecutive block on disk. This
organization is called spanned because records can span more than one block.
Whenever a record is larger than a block, we must use a spanned organization. If
records are not allowed to cross block boundaries, the organization is called
unspanned. This is used with fixed-length records having B > R because it makes

5Other schemes are also possible for representing variable-length records.
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each record start at a known location in the block, simplifying record processing. For
variable-length records, either a spanned or an unspanned organization can be used.
If the average record is large, it is advantageous to use spanning to reduce the lost
space in each block. Figure 17.6 illustrates spanned versus unspanned organization.

For variable-length records using spanned organization, each block may store a dif-
ferent number of records. In this case, the blocking factor bfr represents the average
number of records per block for the file. We can use bfr to calculate the number of
blocks b needed for a file of r records:

b = ⎡(r/bfr)⎤ blocks

where the ⎡(x)⎤ (ceiling function) rounds the value x up to the next integer.

17.4.4 Allocating File Blocks on Disk
There are several standard techniques for allocating the blocks of a file on disk. In
contiguous allocation, the file blocks are allocated to consecutive disk blocks. This
makes reading the whole file very fast using double buffering, but it makes expand-
ing the file difficult. In linked allocation, each file block contains a pointer to the
next file block. This makes it easy to expand the file but makes it slow to read the
whole file. A combination of the two allocates clusters of consecutive disk blocks,
and the clusters are linked. Clusters are sometimes called file segments or extents.
Another possibility is to use indexed allocation, where one or more index blocks
contain pointers to the actual file blocks. It is also common to use combinations of
these techniques.

17.4.5 File Headers
A file header or file descriptor contains information about a file that is needed by
the system programs that access the file records. The header includes information to
determine the disk addresses of the file blocks as well as to record format descrip-
tions, which may include field lengths and the order of fields within a record for
fixed-length unspanned records and field type codes, separator characters, and
record type codes for variable-length records.

To search for a record on disk, one or more blocks are copied into main memory
buffers. Programs then search for the desired record or records within the buffers,
using the information in the file header. If the address of the block that contains the
desired record is not known, the search programs must do a linear search through
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the file blocks. Each file block is copied into a buffer and searched until the record is
located or all the file blocks have been searched unsuccessfully. This can be very
time-consuming for a large file. The goal of a good file organization is to locate the
block that contains a desired record with a minimal number of block transfers.

17.5 Operations on Files
Operations on files are usually grouped into retrieval operations and update oper-
ations. The former do not change any data in the file, but only locate certain records
so that their field values can be examined and processed. The latter change the file
by insertion or deletion of records or by modification of field values. In either case,
we may have to select one or more records for retrieval, deletion, or modification
based on a selection condition (or filtering condition), which specifies criteria that
the desired record or records must satisfy.

Consider an EMPLOYEE file with fields Name, Ssn, Salary, Job_code, and Department.
A simple selection condition may involve an equality comparison on some field
value—for example, (Ssn = ‘123456789’) or (Department = ‘Research’). More com-
plex conditions can involve other types of comparison operators, such as > or ≥; an
example is (Salary ≥ 30000). The general case is to have an arbitrary Boolean expres-
sion on the fields of the file as the selection condition.

Search operations on files are generally based on simple selection conditions. A
complex condition must be decomposed by the DBMS (or the programmer) to
extract a simple condition that can be used to locate the records on disk. Each
located record is then checked to determine whether it satisfies the full selection
condition. For example, we may extract the simple condition (Department =
‘Research’) from the complex condition ((Salary ≥ 30000) AND (Department =
‘Research’)); each record satisfying (Department = ‘Research’) is located and then
tested to see if it also satisfies (Salary ≥ 30000).

When several file records satisfy a search condition, the first record—with respect to
the physical sequence of file records—is initially located and designated the current
record. Subsequent search operations commence from this record and locate the
next record in the file that satisfies the condition.

Actual operations for locating and accessing file records vary from system to system.
Below, we present a set of representative operations. Typically, high-level programs,
such as DBMS software programs, access records by using these commands, so we
sometimes refer to program variables in the following descriptions:

■ Open. Prepares the file for reading or writing. Allocates appropriate buffers
(typically at least two) to hold file blocks from disk, and retrieves the file
header. Sets the file pointer to the beginning of the file.

■ Reset. Sets the file pointer of an open file to the beginning of the file.
■ Find (or Locate). Searches for the first record that satisfies a search condi-

tion. Transfers the block containing that record into a main memory buffer
(if it is not already there). The file pointer points to the record in the buffer
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and it becomes the current record. Sometimes, different verbs are used to
indicate whether the located record is to be retrieved or updated.

■ Read (or Get). Copies the current record from the buffer to a program vari-
able in the user program. This command may also advance the current
record pointer to the next record in the file, which may necessitate reading
the next file block from disk.

■ FindNext. Searches for the next record in the file that satisfies the search
condition. Transfers the block containing that record into a main memory
buffer (if it is not already there). The record is located in the buffer and
becomes the current record. Various forms of FindNext (for example, Find
Next record within a current parent record, Find Next record of a given type,
or Find Next record where a complex condition is met) are available in
legacy DBMSs based on the hierarchical and network models.

■ Delete. Deletes the current record and (eventually) updates the file on disk
to reflect the deletion.

■ Modify. Modifies some field values for the current record and (eventually)
updates the file on disk to reflect the modification.

■ Insert. Inserts a new record in the file by locating the block where the record
is to be inserted, transferring that block into a main memory buffer (if it is
not already there), writing the record into the buffer, and (eventually) writ-
ing the buffer to disk to reflect the insertion.

■ Close. Completes the file access by releasing the buffers and performing any
other needed cleanup operations.

The preceding (except for Open and Close) are called record-at-a-time operations
because each operation applies to a single record. It is possible to streamline the
operations Find, FindNext, and Read into a single operation, Scan, whose descrip-
tion is as follows:

■ Scan. If the file has just been opened or reset, Scan returns the first record;
otherwise it returns the next record. If a condition is specified with the oper-
ation, the returned record is the first or next record satisfying the condition.

In database systems, additional set-at-a-time higher-level operations may be
applied to a file. Examples of these are as follows:

■ FindAll. Locates all the records in the file that satisfy a search condition.

■ Find (or Locate) n. Searches for the first record that satisfies a search condi-
tion and then continues to locate the next n – 1 records satisfying the same
condition. Transfers the blocks containing the n records to the main memory
buffer (if not already there).

■ FindOrdered. Retrieves all the records in the file in some specified order.

■ Reorganize. Starts the reorganization process. As we shall see, some file
organizations require periodic reorganization. An example is to reorder the
file records by sorting them on a specified field.
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At this point, it is worthwhile to note the difference between the terms file organiza-
tion and access method. A file organization refers to the organization of the data of
a file into records, blocks, and access structures; this includes the way records and
blocks are placed on the storage medium and interlinked. An access method, on the
other hand, provides a group of operations—such as those listed earlier—that can
be applied to a file. In general, it is possible to apply several access methods to a file
organization. Some access methods, though, can be applied only to files organized
in certain ways. For example, we cannot apply an indexed access method to a file
without an index (see Chapter 18).

Usually, we expect to use some search conditions more than others. Some files may
be static, meaning that update operations are rarely performed; other, more
dynamic files may change frequently, so update operations are constantly applied to
them. A successful file organization should perform as efficiently as possible the
operations we expect to apply frequently to the file. For example, consider the
EMPLOYEE file, as shown in Figure 17.5(a), which stores the records for current
employees in a company. We expect to insert records (when employees are hired),
delete records (when employees leave the company), and modify records (for exam-
ple, when an employee’s salary or job is changed). Deleting or modifying a record
requires a selection condition to identify a particular record or set of records.
Retrieving one or more records also requires a selection condition.

If users expect mainly to apply a search condition based on Ssn, the designer must
choose a file organization that facilitates locating a record given its Ssn value. This
may involve physically ordering the records by Ssn value or defining an index on
Ssn (see Chapter 18). Suppose that a second application uses the file to generate
employees’ paychecks and requires that paychecks are grouped by department. For
this application, it is best to order employee records by department and then by
name within each department. The clustering of records into blocks and the organ-
ization of blocks on cylinders would now be different than before. However, this
arrangement conflicts with ordering the records by Ssn values. If both applications
are important, the designer should choose an organization that allows both opera-
tions to be done efficiently. Unfortunately, in many cases a single organization does
not allow all needed operations on a file to be implemented efficiently. This requires
that a compromise must be chosen that takes into account the expected importance
and mix of retrieval and update operations.

In the following sections and in Chapter 18, we discuss methods for organizing
records of a file on disk. Several general techniques, such as ordering, hashing, and
indexing, are used to create access methods. Additionally, various general tech-
niques for handling insertions and deletions work with many file organizations.

17.6 Files of Unordered Records (Heap Files)
In this simplest and most basic type of organization, records are placed in the file in
the order in which they are inserted, so new records are inserted at the end of the
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file. Such an organization is called a heap or pile file.6 This organization is often
used with additional access paths, such as the secondary indexes discussed in
Chapter 18. It is also used to collect and store data records for future use.

Inserting a new record is very efficient. The last disk block of the file is copied into a
buffer, the new record is added, and the block is then rewritten back to disk. The
address of the last file block is kept in the file header. However, searching for a
record using any search condition involves a linear search through the file block by
block—an expensive procedure. If only one record satisfies the search condition,
then, on the average, a program will read into memory and search half the file
blocks before it finds the record. For a file of b blocks, this requires searching (b/2)
blocks, on average. If no records or several records satisfy the search condition, the
program must read and search all b blocks in the file.

To delete a record, a program must first find its block, copy the block into a buffer,
delete the record from the buffer, and finally rewrite the block back to the disk. This
leaves unused space in the disk block. Deleting a large number of records in this way
results in wasted storage space. Another technique used for record deletion is to
have an extra byte or bit, called a deletion marker, stored with each record. A record
is deleted by setting the deletion marker to a certain value. A different value for the
marker indicates a valid (not deleted) record. Search programs consider only valid
records in a block when conducting their search. Both of these deletion techniques
require periodic reorganization of the file to reclaim the unused space of deleted
records. During reorganization, the file blocks are accessed consecutively, and
records are packed by removing deleted records. After such a reorganization, the
blocks are filled to capacity once more. Another possibility is to use the space of
deleted records when inserting new records, although this requires extra bookkeep-
ing to keep track of empty locations.

We can use either spanned or unspanned organization for an unordered file, and it
may be used with either fixed-length or variable-length records. Modifying a vari-
able-length record may require deleting the old record and inserting a modified
record because the modified record may not fit in its old space on disk.

To read all records in order of the values of some field, we create a sorted copy of the
file. Sorting is an expensive operation for a large disk file, and special techniques for
external sorting are used (see Chapter 19).

For a file of unordered fixed-length records using unspanned blocks and contiguous
allocation, it is straightforward to access any record by its position in the file. If the
file records are numbered 0, 1, 2, ..., r − 1 and the records in each block are num-
bered 0, 1, ..., bfr − 1, where bfr is the blocking factor, then the ith record of the file
is located in block ⎣(i/bfr)⎦ and is the (i mod bfr)th record in that block. Such a file
is often called a relative or direct file because records can easily be accessed directly
by their relative positions. Accessing a record by its position does not help locate a
record based on a search condition; however, it facilitates the construction of access
paths on the file, such as the indexes discussed in Chapter 18.

6Sometimes this organization is called a sequential file.
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17.7 Files of Ordered Records (Sorted Files)
We can physically order the records of a file on disk based on the values of one of
their fields—called the ordering field. This leads to an ordered or sequential file.7

If the ordering field is also a key field of the file—a field guaranteed to have a
unique value in each record—then the field is called the ordering key for the file.
Figure 17.7 shows an ordered file with Name as the ordering key field (assuming that
employees have distinct names).

Ordered records have some advantages over unordered files. First, reading the records
in order of the ordering key values becomes extremely efficient because no sorting is
required. Second, finding the next record from the current one in order of the order-
ing key usually requires no additional block accesses because the next record is in the
same block as the current one (unless the current record is the last one in the block).
Third, using a search condition based on the value of an ordering key field results in
faster access when the binary search technique is used, which constitutes an improve-
ment over linear searches, although it is not often used for disk files. Ordered files are
blocked and stored on contiguous cylinders to minimize the seek time.

A binary search for disk files can be done on the blocks rather than on the records.
Suppose that the file has b blocks numbered 1, 2, ..., b; the records are ordered by
ascending value of their ordering key field; and we are searching for a record whose
ordering key field value is K. Assuming that disk addresses of the file blocks are avail-
able in the file header, the binary search can be described by Algorithm 17.1. A binary
search usually accesses log2(b) blocks, whether the record is found or not—an
improvement over linear searches, where, on the average, (b/2) blocks are accessed
when the record is found and b blocks are accessed when the record is not found.

Algorithm 17.1. Binary Search on an Ordering Key of a Disk File

l ← 1; u ← b; (* b is the number of file blocks *)
while (u ≥ l ) do

begin i ← (l + u) div 2;
read block i of the file into the buffer;
if K < (ordering key field value of the first record in block i )

then u ← i – 1
else if K > (ordering key field value of the last record in block i )

then l ← i + 1
else if the record with ordering key field value = K is in the buffer

then goto found
else goto notfound;
end;

goto notfound;

A search criterion involving the conditions >, <, ≥, and ≤ on the ordering field 
is quite efficient, since the physical ordering of records means that all records 

7The term sequential file has also been used to refer to unordered files, although it is more appropriate
for ordered files.
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Name

Aaron, Ed

Abbott, Diane

Block 1

Acosta, Marc

Ssn Birth_date

...

Job Salary Sex

...

Adams, John

Adams, Robin

Block 2

Akers, Jan

...

Alexander, Ed

Alfred, Bob

Block 3

Allen, Sam

...

Allen, Troy

Anders, Keith

Block 4

Anderson, Rob

...

Anderson, Zach

Angeli, Joe

Block 5

Archer, Sue

...

Arnold, Mack

Arnold, Steven

Block 6

Atkins, Timothy

Wong, James

Wood, Donald

Block n–1

Woods, Manny

...

Wright, Pam

Wyatt, Charles

Block n

Zimmer, Byron

...

Figure 17.7
Some blocks of an ordered
(sequential) file of EMPLOYEE
records with Name as the
ordering key field.

satisfying the condition are contiguous in the file. For example, referring to Figure
17.7, if the search criterion is (Name < ‘G’)—where < means alphabetically before—
the records satisfying the search criterion are those from the beginning of the file up
to the first record that has a Name value starting with the letter ‘G’.
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Ordering does not provide any advantages for random or ordered access of the
records based on values of the other nonordering fields of the file. In these cases, we
do a linear search for random access. To access the records in order based on a
nonordering field, it is necessary to create another sorted copy—in a different
order—of the file.

Inserting and deleting records are expensive operations for an ordered file because
the records must remain physically ordered. To insert a record, we must find its cor-
rect position in the file, based on its ordering field value, and then make space in the
file to insert the record in that position. For a large file this can be very time-
consuming because, on the average, half the records of the file must be moved to
make space for the new record. This means that half the file blocks must be read and
rewritten after records are moved among them. For record deletion, the problem is
less severe if deletion markers and periodic reorganization are used.

One option for making insertion more efficient is to keep some unused space in each
block for new records. However, once this space is used up, the original problem
resurfaces. Another frequently used method is to create a temporary unordered file
called an overflow or transaction file. With this technique, the actual ordered file is
called the main or master file. New records are inserted at the end of the overflow file
rather than in their correct position in the main file. Periodically, the overflow file is
sorted and merged with the master file during file reorganization. Insertion becomes
very efficient, but at the cost of increased complexity in the search algorithm. The
overflow file must be searched using a linear search if, after the binary search, the
record is not found in the main file. For applications that do not require the most up-
to-date information, overflow records can be ignored during a search.

Modifying a field value of a record depends on two factors: the search condition to
locate the record and the field to be modified. If the search condition involves the
ordering key field, we can locate the record using a binary search; otherwise we must
do a linear search. A nonordering field can be modified by changing the record and
rewriting it in the same physical location on disk—assuming fixed-length records.
Modifying the ordering field means that the record can change its position in the
file. This requires deletion of the old record followed by insertion of the modified
record.

Reading the file records in order of the ordering field is quite efficient if we ignore
the records in overflow, since the blocks can be read consecutively using double
buffering. To include the records in overflow, we must merge them in their correct
positions; in this case, first we can reorganize the file, and then read its blocks
sequentially. To reorganize the file, first we sort the records in the overflow file, and
then merge them with the master file. The records marked for deletion are removed
during the reorganization.

Table 17.2 summarizes the average access time in block accesses to find a specific
record in a file with b blocks.

Ordered files are rarely used in database applications unless an additional access
path, called a primary index, is used; this results in an indexed-sequential file. This
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Table 17.2 Average Access Times for a File of b Blocks under Basic File Organizations

Average Blocks to Access
Type of Organization Access/Search Method a Specific Record

Heap (unordered) Sequential scan (linear search) b/2
Ordered Sequential scan b/2
Ordered Binary search log2 b

further improves the random access time on the ordering key field. (We discuss
indexes in Chapter 18.) If the ordering attribute is not a key, the file is called a
clustered file.

17.8 Hashing Techniques
Another type of primary file organization is based on hashing, which provides very
fast access to records under certain search conditions. This organization is usually
called a hash file.8 The search condition must be an equality condition on a single
field, called the hash field. In most cases, the hash field is also a key field of the file,
in which case it is called the hash key. The idea behind hashing is to provide a func-
tion h, called a hash function or randomizing function, which is applied to the
hash field value of a record and yields the address of the disk block in which the
record is stored. A search for the record within the block can be carried out in a
main memory buffer. For most records, we need only a single-block access to
retrieve that record.

Hashing is also used as an internal search structure within a program whenever a
group of records is accessed exclusively by using the value of one field. We describe
the use of hashing for internal files in Section 17.8.1; then we show how it is modi-
fied to store external files on disk in Section 17.8.2. In Section 17.8.3 we discuss
techniques for extending hashing to dynamically growing files.

17.8.1 Internal Hashing
For internal files, hashing is typically implemented as a hash table through the use
of an array of records. Suppose that the array index range is from 0 to M – 1, as
shown in Figure 17.8(a); then we have M slots whose addresses correspond to the
array indexes. We choose a hash function that transforms the hash field value into
an integer between 0 and M − 1. One common hash function is the h(K) = K mod
M function, which returns the remainder of an integer hash field value K after divi-
sion by M; this value is then used for the record address.

8A hash file has also been called a direct file.
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Noninteger hash field values can be transformed into integers before the mod func-
tion is applied. For character strings, the numeric (ASCII) codes associated with
characters can be used in the transformation—for example, by multiplying those
code values. For a hash field whose data type is a string of 20 characters, Algorithm
17.2(a) can be used to calculate the hash address. We assume that the code function
returns the numeric code of a character and that we are given a hash field value K of
type K: array [1..20] of char (in Pascal) or char K[20] (in C).

(a)
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...

Figure 17.8
Internal hashing data structures. (a) Array
of M positions for use in internal hashing.
(b) Collision resolution by chaining records.
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Algorithm 17.2. Two simple hashing algorithms: (a) Applying the mod hash
function to a character string K. (b) Collision resolution by open addressing.

(a) temp ← 1;
for i ← 1 to 20 do temp ← temp * code(K[i ] ) mod M ;
hash_address ← temp mod M;

(b) i ← hash_address(K); a ← i;
if location i is occupied

then begin i ← (i + 1) mod M;
while (i ≠ a) and location i is occupied

do i ← (i + 1) mod M;
if (i = a) then all positions are full
else new_hash_address ← i;
end;

Other hashing functions can be used. One technique, called folding, involves apply-
ing an arithmetic function such as addition or a logical function such as exclusive or
to different portions of the hash field value to calculate the hash address (for exam-
ple, with an address space from 0 to 999 to store 1,000 keys, a 6-digit key 235469
may be folded and stored at the address: (235+964) mod 1000 = 199). Another tech-
nique involves picking some digits of the hash field value—for instance, the third,
fifth, and eighth digits—to form the hash address (for example, storing 1,000
employees with Social Security numbers of 10 digits into a hash file with 1,000 posi-
tions would give the Social Security number 301-67-8923 a hash value of 172 by this
hash function).9 The problem with most hashing functions is that they do not guar-
antee that distinct values will hash to distinct addresses, because the hash field
space—the number of possible values a hash field can take—is usually much larger
than the address space—the number of available addresses for records. The hashing
function maps the hash field space to the address space.

A collision occurs when the hash field value of a record that is being inserted hashes
to an address that already contains a different record. In this situation, we must
insert the new record in some other position, since its hash address is occupied. The
process of finding another position is called collision resolution. There are numer-
ous methods for collision resolution, including the following:

■ Open addressing. Proceeding from the occupied position specified by the
hash address, the program checks the subsequent positions in order until an
unused (empty) position is found. Algorithm 17.2(b) may be used for this
purpose.

■ Chaining. For this method, various overflow locations are kept, usually by
extending the array with a number of overflow positions. Additionally, a
pointer field is added to each record location. A collision is resolved by plac-
ing the new record in an unused overflow location and setting the pointer of
the occupied hash address location to the address of that overflow location.

9A detailed discussion of hashing functions is outside the scope of our presentation.



17.8 Hashing Techniques 609

A linked list of overflow records for each hash address is thus maintained, as
shown in Figure 17.8(b).

■ Multiple hashing. The program applies a second hash function if the first
results in a collision. If another collision results, the program uses open
addressing or applies a third hash function and then uses open addressing if
necessary.

Each collision resolution method requires its own algorithms for insertion,
retrieval, and deletion of records. The algorithms for chaining are the simplest.
Deletion algorithms for open addressing are rather tricky. Data structures textbooks
discuss internal hashing algorithms in more detail.

The goal of a good hashing function is to distribute the records uniformly over the
address space so as to minimize collisions while not leaving many unused locations.
Simulation and analysis studies have shown that it is usually best to keep a hash
table between 70 and 90 percent full so that the number of collisions remains low
and we do not waste too much space. Hence, if we expect to have r records to store
in the table, we should choose M locations for the address space such that (r/M) is
between 0.7 and 0.9. It may also be useful to choose a prime number for M, since it
has been demonstrated that this distributes the hash addresses better over the
address space when the mod hashing function is used. Other hash functions may
require M to be a power of 2.

17.8.2 External Hashing for Disk Files
Hashing for disk files is called external hashing. To suit the characteristics of disk
storage, the target address space is made of buckets, each of which holds multiple
records. A bucket is either one disk block or a cluster of contiguous disk blocks. The
hashing function maps a key into a relative bucket number, rather than assigning an
absolute block address to the bucket. A table maintained in the file header converts
the bucket number into the corresponding disk block address, as illustrated in
Figure 17.9.

The collision problem is less severe with buckets, because as many records as will fit
in a bucket can hash to the same bucket without causing problems. However, we
must make provisions for the case where a bucket is filled to capacity and a new
record being inserted hashes to that bucket. We can use a variation of chaining in
which a pointer is maintained in each bucket to a linked list of overflow records for
the bucket, as shown in Figure 17.10. The pointers in the linked list should be
record pointers, which include both a block address and a relative record position
within the block.

Hashing provides the fastest possible access for retrieving an arbitrary record given
the value of its hash field. Although most good hash functions do not maintain
records in order of hash field values, some functions—called order preserving—
do. A simple example of an order preserving hash function is to take the leftmost
three digits of an invoice number field that yields a bucket address as the hash
address and keep the records sorted by invoice number within each bucket. Another
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0
1
2

M – 2
M – 1

Bucket 
Number Block address on disk

Figure 17.9
Matching bucket numbers to disk
block addresses.

example is to use an integer hash key directly as an index to a relative file, if the hash
key values fill up a particular interval; for example, if employee numbers in a com-
pany are assigned as 1, 2, 3, ... up to the total number of employees, we can use the
identity hash function that maintains order. Unfortunately, this only works if keys
are generated in order by some application.

The hashing scheme described so far is called static hashing because a fixed number
of buckets M is allocated. This can be a serious drawback for dynamic files. Suppose
that we allocate M buckets for the address space and let m be the maximum number
of records that can fit in one bucket; then at most (m * M) records will fit in the allo-
cated space. If the number of records turns out to be substantially fewer than 
(m * M), we are left with a lot of unused space. On the other hand, if the number of
records increases to substantially more than (m * M), numerous collisions will
result and retrieval will be slowed down because of the long lists of overflow
records. In either case, we may have to change the number of blocks M allocated and
then use a new hashing function (based on the new value of M) to redistribute the
records. These reorganizations can be quite time-consuming for large files. Newer
dynamic file organizations based on hashing allow the number of buckets to vary
dynamically with only localized reorganization (see Section 17.8.3).

When using external hashing, searching for a record given a value of some field
other than the hash field is as expensive as in the case of an unordered file. Record
deletion can be implemented by removing the record from its bucket. If the bucket
has an overflow chain, we can move one of the overflow records into the bucket to
replace the deleted record. If the record to be deleted is already in overflow, we sim-
ply remove it from the linked list. Notice that removing an overflow record implies
that we should keep track of empty positions in overflow. This is done easily by
maintaining a linked list of unused overflow locations.
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Handling overflow for buckets
by chaining.

Modifying a specific record’s field value depends on two factors: the search condi-
tion to locate that specific record and the field to be modified. If the search condi-
tion is an equality comparison on the hash field, we can locate the record efficiently
by using the hashing function; otherwise, we must do a linear search. A nonhash
field can be modified by changing the record and rewriting it in the same bucket.
Modifying the hash field means that the record can move to another bucket, which
requires deletion of the old record followed by insertion of the modified record.

17.8.3 Hashing Techniques That Allow Dynamic File Expansion
A major drawback of the static hashing scheme just discussed is that the hash
address space is fixed. Hence, it is difficult to expand or shrink the file dynamically.
The schemes described in this section attempt to remedy this situation. The first
scheme—extendible hashing—stores an access structure in addition to the file, and
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hence is somewhat similar to indexing (see Chapter 18). The main difference is that
the access structure is based on the values that result after application of the hash
function to the search field. In indexing, the access structure is based on the values
of the search field itself. The second technique, called linear hashing, does not
require additional access structures. Another scheme, called dynamic hashing, uses
an access structure based on binary tree data structures..

These hashing schemes take advantage of the fact that the result of applying a hash-
ing function is a nonnegative integer and hence can be represented as a binary num-
ber. The access structure is built on the binary representation of the hashing
function result, which is a string of bits. We call this the hash value of a record.
Records are distributed among buckets based on the values of the leading bits in
their hash values.

Extendible Hashing. In extendible hashing, a type of directory—an array of 2d

bucket addresses—is maintained, where d is called the global depth of the direc-
tory. The integer value corresponding to the first (high-order) d bits of a hash value
is used as an index to the array to determine a directory entry, and the address in
that entry determines the bucket in which the corresponding records are stored.
However, there does not have to be a distinct bucket for each of the 2d directory
locations. Several directory locations with the same first d� bits for their hash values
may contain the same bucket address if all the records that hash to these locations fit
in a single bucket. A local depth d�—stored with each bucket—specifies the number
of bits on which the bucket contents are based. Figure 17.11 shows a directory with
global depth d = 3.

The value of d can be increased or decreased by one at a time, thus doubling or halv-
ing the number of entries in the directory array. Doubling is needed if a bucket,
whose local depth d� is equal to the global depth d, overflows. Halving occurs if d >
d� for all the buckets after some deletions occur. Most record retrievals require two
block accesses—one to the directory and the other to the bucket.

To illustrate bucket splitting, suppose that a new inserted record causes overflow in
the bucket whose hash values start with 01—the third bucket in Figure 17.11. The
records will be distributed between two buckets: the first contains all records whose
hash values start with 010, and the second all those whose hash values start with
011. Now the two directory locations for 010 and 011 point to the two new distinct
buckets. Before the split, they pointed to the same bucket. The local depth d� of the
two new buckets is 3, which is one more than the local depth of the old bucket.

If a bucket that overflows and is split used to have a local depth d�equal to the global
depth d of the directory, then the size of the directory must now be doubled so that
we can use an extra bit to distinguish the two new buckets. For example, if the
bucket for records whose hash values start with 111 in Figure 17.11 overflows, the
two new buckets need a directory with global depth d = 4, because the two buckets
are now labeled 1110 and 1111, and hence their local depths are both 4. The direc-
tory size is hence doubled, and each of the other original locations in the directory
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Structure of the
extendible hashing
scheme.

is also split into two locations, both of which have the same pointer value as did the
original location.

The main advantage of extendible hashing that makes it attractive is that the per-
formance of the file does not degrade as the file grows, as opposed to static external
hashing where collisions increase and the corresponding chaining effectively
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increases the average number of accesses per key. Additionally, no space is allocated
in extendible hashing for future growth, but additional buckets can be allocated
dynamically as needed. The space overhead for the directory table is negligible. The
maximum directory size is 2k, where k is the number of bits in the hash value.
Another advantage is that splitting causes minor reorganization in most cases, since
only the records in one bucket are redistributed to the two new buckets. The only
time reorganization is more expensive is when the directory has to be doubled (or
halved). A disadvantage is that the directory must be searched before accessing the
buckets themselves, resulting in two block accesses instead of one in static hashing.
This performance penalty is considered minor and thus the scheme is considered
quite desirable for dynamic files.

Dynamic Hashing. A precursor to extendible hashing was dynamic hashing, in
which the addresses of the buckets were either the n high-order bits or n − 1 high-
order bits, depending on the total number of keys belonging to the respective
bucket. The eventual storage of records in buckets for dynamic hashing is somewhat
similar to extendible hashing. The major difference is in the organization of the
directory. Whereas extendible hashing uses the notion of global depth (high-order d
bits) for the flat directory and then combines adjacent collapsible buckets into a
bucket of local depth d − 1, dynamic hashing maintains a tree-structured directory
with two types of nodes:

■ Internal nodes that have two pointers—the left pointer corresponding to the
0 bit (in the hashed address) and a right pointer corresponding to the 1 bit.

■ Leaf nodes—these hold a pointer to the actual bucket with records.

An example of the dynamic hashing appears in Figure 17.12. Four buckets are
shown (“000”, “001”, “110”, and “111”) with high-order 3-bit addresses (corre-
sponding to the global depth of 3), and two buckets (“01” and “10” ) are shown with
high-order 2-bit addresses (corresponding to the local depth of 2). The latter two
are the result of collapsing the “010” and “011” into “01” and collapsing “100” and
“101” into “10”. Note that the directory nodes are used implicitly to determine the
“global” and “local” depths of buckets in dynamic hashing. The search for a record
given the hashed address involves traversing the directory tree, which leads to the
bucket holding that record. It is left to the reader to develop algorithms for inser-
tion, deletion, and searching of records for the dynamic hashing scheme.

Linear Hashing. The idea behind linear hashing is to allow a hash file to expand
and shrink its number of buckets dynamically without needing a directory. Suppose
that the file starts with M buckets numbered 0, 1, ..., M − 1 and uses the mod hash
function h(K) = K mod M; this hash function is called the initial hash function hi.
Overflow because of collisions is still needed and can be handled by maintaining
individual overflow chains for each bucket. However, when a collision leads to an
overflow record in any file bucket, the first bucket in the file—bucket 0—is split into
two buckets: the original bucket 0 and a new bucket M at the end of the file. The
records originally in bucket 0 are distributed between the two buckets based on a
different hashing function hi+1(K) = K mod 2M. A key property of the two hash
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Structure of the dynamic hashing scheme.

functions hi and hi+1 is that any records that hashed to bucket 0 based on hi will hash
to either bucket 0 or bucket M based on hi+1; this is necessary for linear hashing to
work.

As further collisions lead to overflow records, additional buckets are split in the
linear order 1, 2, 3, .... If enough overflows occur, all the original file buckets 0, 1, ...,
M − 1 will have been split, so the file now has 2M instead of M buckets, and all buck-
ets use the hash function hi+1. Hence, the records in overflow are eventually redis-
tributed into regular buckets, using the function hi+1 via a delayed split of their
buckets. There is no directory; only a value n—which is initially set to 0 and is incre-
mented by 1 whenever a split occurs—is needed to determine which buckets have
been split. To retrieve a record with hash key value K, first apply the function hi to K;
if hi(K) < n, then apply the function hi+1 on K because the bucket is already split.
Initially, n = 0, indicating that the function hi applies to all buckets; n grows linearly
as buckets are split.
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When n = M after being incremented, this signifies that all the original buckets have
been split and the hash function hi+1 applies to all records in the file. At this point, n
is reset to 0 (zero), and any new collisions that cause overflow lead to the use of a
new hashing function hi+2(K) = K mod 4M. In general, a sequence of hashing func-
tions hi+j(K) = K mod (2jM) is used, where j = 0, 1, 2, ...; a new hashing function
hi+j+1 is needed whenever all the buckets 0, 1, ..., (2jM) − 1 have been split and n is
reset to 0. The search for a record with hash key value K is given by Algorithm 17.3.

Splitting can be controlled by monitoring the file load factor instead of by splitting
whenever an overflow occurs. In general, the file load factor l can be defined as l =
r/(bfr * N), where r is the current number of file records, bfr is the maximum num-
ber of records that can fit in a bucket, and N is the current number of file buckets.
Buckets that have been split can also be recombined if the load factor of the file falls
below a certain threshold. Blocks are combined linearly, and N is decremented
appropriately. The file load can be used to trigger both splits and combinations; in
this manner the file load can be kept within a desired range. Splits can be triggered
when the load exceeds a certain threshold—say, 0.9—and combinations can be trig-
gered when the load falls below another threshold—say, 0.7. The main advantages
of linear hashing are that it maintains the load factor fairly constantly while the file
grows and shrinks, and it does not require a directory.10

Algorithm 17.3. The Search Procedure for Linear Hashing

if n = 0
then m ← hj (K) (* m is the hash value of record with hash key K *)
else begin

m ← hj (K);
if m < n then m ← hj+1 (K)
end;

search the bucket whose hash value is m (and its overflow, if any);

17.9 Other Primary File Organizations

17.9.1 Files of Mixed Records
The file organizations we have studied so far assume that all records of a particular
file are of the same record type. The records could be of EMPLOYEEs, PROJECTs,
STUDENTs, or DEPARTMENTs, but each file contains records of only one type. In
most database applications, we encounter situations in which numerous types of
entities are interrelated in various ways, as we saw in Chapter 7. Relationships
among records in various files can be represented by connecting fields.11 For exam-
ple, a STUDENT record can have a connecting field Major_dept whose value gives the

10For details of insertion and deletion into Linear hashed files, refer to Litwin (1980) and Salzberg
(1988).
11The concept of foreign keys in the relational data model (Chapter 3) and references among objects in
object-oriented models (Chapter 11) are examples of connecting fields.
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name of the DEPARTMENT in which the student is majoring. This Major_dept field
refers to a DEPARTMENT entity, which should be represented by a record of its own
in the DEPARTMENT file. If we want to retrieve field values from two related records,
we must retrieve one of the records first. Then we can use its connecting field value
to retrieve the related record in the other file. Hence, relationships are implemented
by logical field references among the records in distinct files.

File organizations in object DBMSs, as well as legacy systems such as hierarchical
and network DBMSs, often implement relationships among records as physical
relationships realized by physical contiguity (or clustering) of related records or by
physical pointers. These file organizations typically assign an area of the disk to
hold records of more than one type so that records of different types can be
physically clustered on disk. If a particular relationship is expected to be used fre-
quently, implementing the relationship physically can increase the system’s effi-
ciency at retrieving related records. For example, if the query to retrieve a
DEPARTMENT record and all records for STUDENTs majoring in that department is
frequent, it would be desirable to place each DEPARTMENT record and its cluster of
STUDENT records contiguously on disk in a mixed file. The concept of physical
clustering of object types is used in object DBMSs to store related objects together
in a mixed file.

To distinguish the records in a mixed file, each record has—in addition to its field
values—a record type field, which specifies the type of record. This is typically the
first field in each record and is used by the system software to determine the type of
record it is about to process. Using the catalog information, the DBMS can deter-
mine the fields of that record type and their sizes, in order to interpret the data val-
ues in the record.

17.9.2 B-Trees and Other Data Structures 
as Primary Organization

Other data structures can be used for primary file organizations. For example, if both
the record size and the number of records in a file are small, some DBMSs offer the
option of a B-tree data structure as the primary file organization. We will describe B-
trees in Section 18.3.1, when we discuss the use of the B-tree data structure for index-
ing. In general, any data structure that can be adapted to the characteristics of disk
devices can be used as a primary file organization for record placement on disk.
Recently, column-based storage of data has been proposed as a primary method for
storage of relations in relational databases. We will briefly introduce it in Chapter 18
as a possible alternative storage scheme for relational databases.

17.10 Parallelizing Disk Access 
Using RAID Technology

With the exponential growth in the performance and capacity of semiconductor
devices and memories, faster microprocessors with larger and larger primary mem-
ories are continually becoming available. To match this growth, it is natural to
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expect that secondary storage technology must also take steps to keep up with
processor technology in performance and reliability.

A major advance in secondary storage technology is represented by the develop-
ment of RAID, which originally stood for Redundant Arrays of Inexpensive Disks.
More recently, the I in RAID is said to stand for Independent. The RAID idea
received a very positive industry endorsement and has been developed into an elab-
orate set of alternative RAID architectures (RAID levels 0 through 6). We highlight
the main features of the technology in this section.

The main goal of RAID is to even out the widely different rates of performance
improvement of disks against those in memory and microprocessors.12 While RAM
capacities have quadrupled every two to three years, disk access times are improving
at less than 10 percent per year, and disk transfer rates are improving at roughly 20
percent per year. Disk capacities are indeed improving at more than 50 percent per
year, but the speed and access time improvements are of a much smaller magnitude.

A second qualitative disparity exists between the ability of special microprocessors
that cater to new applications involving video, audio, image, and spatial data pro-
cessing (see Chapters 26 and 30 for details of these applications), with correspond-
ing lack of fast access to large, shared data sets.

The natural solution is a large array of small independent disks acting as a single
higher-performance logical disk. A concept called data striping is used, which uti-
lizes parallelism to improve disk performance. Data striping distributes data trans-
parently over multiple disks to make them appear as a single large, fast disk. Figure
17.13 shows a file distributed or striped over four disks. Striping improves overall
I/O performance by allowing multiple I/Os to be serviced in parallel, thus providing
high overall transfer rates. Data striping also accomplishes load balancing among
disks. Moreover, by storing redundant information on disks using parity or some
other error-correction code, reliability can be improved. In Sections 17.10.1 and

12This was predicted by Gordon Bell to be about 40 percent every year between 1974 and 1984 and is
now supposed to exceed 50 percent per year.
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17.10.2, we discuss how RAID achieves the two important objectives of improved
reliability and higher performance. Section 17.10.3 discusses RAID organizations
and levels.

17.10.1 Improving Reliability with RAID
For an array of n disks, the likelihood of failure is n times as much as that for one
disk. Hence, if the MTBF (Mean Time Between Failures) of a disk drive is assumed to
be 200,000 hours or about 22.8 years (for the disk drive in Table 17.1 called Cheetah
NS, it is 1.4 million hours), the MTBF for a bank of 100 disk drives becomes only
2,000 hours or 83.3 days (for 1,000 Cheetah NS disks it would be 1,400 hours or
58.33 days). Keeping a single copy of data in such an array of disks will cause a signif-
icant loss of reliability. An obvious solution is to employ redundancy of data so that
disk failures can be tolerated. The disadvantages are many: additional I/O operations
for write, extra computation to maintain redundancy and to do recovery from
errors, and additional disk capacity to store redundant information.

One technique for introducing redundancy is called mirroring or shadowing. Data
is written redundantly to two identical physical disks that are treated as one logical
disk. When data is read, it can be retrieved from the disk with shorter queuing, seek,
and rotational delays. If a disk fails, the other disk is used until the first is repaired.
Suppose the mean time to repair is 24 hours, then the mean time to data loss of a
mirrored disk system using 100 disks with MTBF of 200,000 hours each is
(200,000)2/(2 * 24) = 8.33 * 108 hours, which is 95,028 years.13 Disk mirroring also
doubles the rate at which read requests are handled, since a read can go to either disk.
The transfer rate of each read, however, remains the same as that for a single disk.

Another solution to the problem of reliability is to store extra information that is not
normally needed but that can be used to reconstruct the lost information in case of
disk failure. The incorporation of redundancy must consider two problems: selecting
a technique for computing the redundant information, and selecting a method of
distributing the redundant information across the disk array. The first problem is
addressed by using error-correcting codes involving parity bits, or specialized codes
such as Hamming codes. Under the parity scheme, a redundant disk may be consid-
ered as having the sum of all the data in the other disks. When a disk fails, the miss-
ing information can be constructed by a process similar to subtraction.

For the second problem, the two major approaches are either to store the redundant
information on a small number of disks or to distribute it uniformly across all disks.
The latter results in better load balancing. The different levels of RAID choose a
combination of these options to implement redundancy and improve reliability.

17.10.2 Improving Performance with RAID
The disk arrays employ the technique of data striping to achieve higher transfer rates.
Note that data can be read or written only one block at a time, so a typical transfer
contains 512 to 8192 bytes. Disk striping may be applied at a finer granularity by

13The formulas for MTBF calculations appear in Chen et al. (1994).
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breaking up a byte of data into bits and spreading the bits to different disks. Thus,
bit-level data striping consists of splitting a byte of data and writing bit j to the jth
disk. With 8-bit bytes, eight physical disks may be considered as one logical disk with
an eightfold increase in the data transfer rate. Each disk participates in each I/O
request and the total amount of data read per request is eight times as much. Bit-level
striping can be generalized to a number of disks that is either a multiple or a factor of
eight. Thus, in a four-disk array, bit n goes to the disk which is (n mod 4). Figure
17.13(a) shows bit-level striping of data.

The granularity of data interleaving can be higher than a bit; for example, blocks of
a file can be striped across disks, giving rise to block-level striping. Figure 17.13(b)
shows block-level data striping assuming the data file contains four blocks. With
block-level striping, multiple independent requests that access single blocks (small
requests) can be serviced in parallel by separate disks, thus decreasing the queuing
time of I/O requests. Requests that access multiple blocks (large requests) can be
parallelized, thus reducing their response time. In general, the more the number of
disks in an array, the larger the potential performance benefit. However, assuming
independent failures, the disk array of 100 disks collectively has 1/100th the reliabil-
ity of a single disk. Thus, redundancy via error-correcting codes and disk mirroring
is necessary to provide reliability along with high performance.

17.10.3 RAID Organizations and Levels
Different RAID organizations were defined based on different combinations of the
two factors of granularity of data interleaving (striping) and pattern used to com-
pute redundant information. In the initial proposal, levels 1 through 5 of RAID
were proposed, and two additional levels—0 and 6—were added later.

RAID level 0 uses data striping, has no redundant data, and hence has the best write
performance since updates do not have to be duplicated. It splits data evenly across
two or more disks. However, its read performance is not as good as RAID level 1,
which uses mirrored disks. In the latter, performance improvement is possible by
scheduling a read request to the disk with shortest expected seek and rotational
delay. RAID level 2 uses memory-style redundancy by using Hamming codes, which
contain parity bits for distinct overlapping subsets of components. Thus, in one
particular version of this level, three redundant disks suffice for four original disks,
whereas with mirroring—as in level 1—four would be required. Level 2 includes
both error detection and correction, although detection is generally not required
because broken disks identify themselves.

RAID level 3 uses a single parity disk relying on the disk controller to figure out
which disk has failed. Levels 4 and 5 use block-level data striping, with level 5 dis-
tributing data and parity information across all disks. Figure 17.14(b) shows an
illustration of RAID level 5, where parity is shown with subscript p. If one disk fails,
the missing data is calculated based on the parity available from the remaining
disks. Finally, RAID level 6 applies the so-called P + Q redundancy scheme using
Reed-Soloman codes to protect against up to two disk failures by using just two
redundant disks.
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Some popular levels of RAID.
(a) RAID level 1: Mirroring of
data on two disks. (b) RAID
level 5: Striping of data with
distributed parity across four
disks.

Rebuilding in case of disk failure is easiest for RAID level 1. Other levels require the
reconstruction of a failed disk by reading multiple disks. Level 1 is used for critical
applications such as storing logs of transactions. Levels 3 and 5 are preferred for
large volume storage, with level 3 providing higher transfer rates. Most popular use
of RAID technology currently uses level 0 (with striping), level 1 (with mirroring),
and level 5 with an extra drive for parity. A combination of multiple RAID levels are
also used – for example, 0+1 combines striping and mirroring using a minimum of
four disks. Other nonstandard RAID levels include: RAID 1.5, RAID 7, RAID-DP,
RAID S or Parity RAID, Matrix RAID, RAID-K, RAID-Z, RAIDn, Linux MD RAID
10, IBM ServeRAID 1E, and unRAID. A discussion of these nonstandard levels is
beyond the scope of this book. Designers of a RAID setup for a given application
mix have to confront many design decisions such as the level of RAID, the number
of disks, the choice of parity schemes, and grouping of disks for block-level striping.
Detailed performance studies on small reads and writes (referring to I/O requests
for one striping unit) and large reads and writes (referring to I/O requests for one
stripe unit from each disk in an error-correction group) have been performed.

17.11 New Storage Systems
In this section, we describe three recent developments in storage systems that are
becoming an integral part of most enterprise’s information system architectures.

17.11.1 Storage Area Networks
With the rapid growth of electronic commerce, Enterprise Resource Planning
(ERP) systems that integrate application data across organizations, and data ware-
houses that keep historical aggregate information (see Chapter 29), the demand for
storage has gone up substantially. For today’s Internet-driven organizations, it has
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become necessary to move from a static fixed data center-oriented operation to a
more flexible and dynamic infrastructure for their information processing require-
ments. The total cost of managing all data is growing so rapidly that in many
instances the cost of managing server-attached storage exceeds the cost of the server
itself. Furthermore, the procurement cost of storage is only a small fraction—typi-
cally, only 10 to 15 percent of the overall cost of storage management. Many users of
RAID systems cannot use the capacity effectively because it has to be attached in a
fixed manner to one or more servers. Therefore, most large organizations have
moved to a concept called storage area networks (SANs). In a SAN, online storage
peripherals are configured as nodes on a high-speed network and can be attached
and detached from servers in a very flexible manner. Several companies have
emerged as SAN providers and supply their own proprietary topologies. They allow
storage systems to be placed at longer distances from the servers and provide differ-
ent performance and connectivity options. Existing storage management applica-
tions can be ported into SAN configurations using Fiber Channel networks that
encapsulate the legacy SCSI protocol. As a result, the SAN-attached devices appear
as SCSI devices.

Current architectural alternatives for SAN include the following: point-to-point
connections between servers and storage systems via fiber channel; use of a fiber
channel switch to connect multiple RAID systems, tape libraries, and so on to
servers; and the use of fiber channel hubs and switches to connect servers and stor-
age systems in different configurations. Organizations can slowly move up from
simpler topologies to more complex ones by adding servers and storage devices as
needed. We do not provide further details here because they vary among SAN ven-
dors. The main advantages claimed include:

■ Flexible many-to-many connectivity among servers and storage devices
using fiber channel hubs and switches

■ Up to 10 km separation between a server and a storage system using appro-
priate fiber optic cables

■ Better isolation capabilities allowing nondisruptive addition of new periph-
erals and servers

SANs are growing very rapidly, but are still faced with many problems, such as com-
bining storage options from multiple vendors and dealing with evolving standards
of storage management software and hardware. Most major companies are evaluat-
ing SANs as a viable option for database storage.

17.11.2 Network-Attached Storage
With the phenomenal growth in digital data, particularly generated from multime-
dia and other enterprise applications, the need for high-performance storage solu-
tions at low cost has become extremely important. Network-attached storage
(NAS) devices are among the storage devices being used for this purpose. These
devices are, in fact, servers that do not provide any of the common server services,
but simply allow the addition of storage for file sharing. NAS devices allow vast
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amounts of hard-disk storage space to be added to a network and can make that
space available to multiple servers without shutting them down for maintenance
and upgrades. NAS devices can reside anywhere on a local area network (LAN) and
may be combined in different configurations. A single hardware device, often called
the NAS box or NAS head, acts as the interface between the NAS system and net-
work clients. These NAS devices require no monitor, keyboard, or mouse. One or
more disk or tape drives can be attached to many NAS systems to increase total
capacity. Clients connect to the NAS head rather than to the individual storage
devices. An NAS can store any data that appears in the form of files, such as e-mail
boxes, Web content, remote system backups, and so on. In that sense, NAS devices
are being deployed as a replacement for traditional file servers.

NAS systems strive for reliable operation and easy administration. They include
built-in features such as secure authentication, or the automatic sending of e-mail
alerts in case of error on the device. The NAS devices (or appliances, as some ven-
dors refer to them) are being offered with a high degree of scalability, reliability,
flexibility, and performance. Such devices typically support RAID levels 0, 1, and 5.
Traditional storage area networks (SANs) differ from NAS in several ways.
Specifically, SANs often utilize Fiber Channel rather than Ethernet, and a SAN often
incorporates multiple network devices or endpoints on a self-contained or private
LAN, whereas NAS relies on individual devices connected directly to the existing
public LAN. Whereas Windows, UNIX, and NetWare file servers each demand spe-
cific protocol support on the client side, NAS systems claim greater operating sys-
tem independence of clients.

17.11.3 iSCSI Storage Systems
A new protocol called iSCSI (Internet SCSI) has been proposed recently. It allows
clients (called initiators) to send SCSI commands to SCSI storage devices on remote
channels. The main advantage of iSCSI is that it does not require the special cabling
needed by Fiber Channel and it can run over longer distances using existing network
infrastructure. By carrying SCSI commands over IP networks, iSCSI facilitates data
transfers over intranets and manages storage over long distances. It can transfer data
over local area networks (LANs), wide area networks (WANs), or the Internet.

iSCSI works as follows. When a DBMS needs to access data, the operating system
generates the appropriate SCSI commands and data request, which then go through
encapsulation and, if necessary, encryption procedures. A packet header is added
before the resulting IP packets are transmitted over an Ethernet connection. When a
packet is received, it is decrypted (if it was encrypted before transmission) and dis-
assembled, separating the SCSI commands and request. The SCSI commands go via
the SCSI controller to the SCSI storage device. Because iSCSI is bidirectional, the
protocol can also be used to return data in response to the original request. Cisco
and IBM have marketed switches and routers based on this technology.

iSCSI storage has mainly impacted small- and medium-sized businesses because of
its combination of simplicity, low cost, and the functionality of iSCSI devices. It
allows them not to learn the ins and outs of Fiber Channel (FC) technology and
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instead benefit from their familiarity with the IP protocol and Ethernet hardware.
iSCSI implementations in the data centers of very large enterprise businesses are
slow in development due to their prior investment in Fiber Channel-based SANs.

iSCSI is one of two main approaches to storage data transmission over IP networks.
The other method, Fiber Channel over IP (FCIP), translates Fiber Channel control
codes and data into IP packets for transmission between geographically distant
Fiber Channel storage area networks. This protocol, known also as Fiber Channel
tunneling or storage tunneling, can only be used in conjunction with Fiber Channel
technology, whereas iSCSI can run over existing Ethernet networks.

The latest idea to enter the enterprise IP storage race is Fiber Channel over
Ethernet (FCoE), which can be thought of as iSCSI without the IP. It uses many ele-
ments of SCSI and FC (just like iSCSI), but it does not include TCP/IP components.
This promises excellent performance, especially on 10 Gigabit Ethernet (10GbE),
and is relatively easy for vendors to add to their products.

17.12 Summary
We began this chapter by discussing the characteristics of memory hierarchies and
then concentrated on secondary storage devices. In particular, we focused on mag-
netic disks because they are used most often to store online database files.

Data on disk is stored in blocks; accessing a disk block is expensive because of the
seek time, rotational delay, and block transfer time. To reduce the average block
access time, double buffering can be used when accessing consecutive disk blocks.
(Other disk parameters are discussed in Appendix B.) We presented different ways
of storing file records on disk. File records are grouped into disk blocks and can be
fixed length or variable length, spanned or unspanned, and of the same record type
or mixed types. We discussed the file header, which describes the record formats and
keeps track of the disk addresses of the file blocks. Information in the file header is
used by system software accessing the file records.

Then we presented a set of typical commands for accessing individual file records
and discussed the concept of the current record of a file. We discussed how complex
record search conditions are transformed into simple search conditions that are
used to locate records in the file.

Three primary file organizations were then discussed: unordered, ordered, and
hashed. Unordered files require a linear search to locate records, but record inser-
tion is very simple. We discussed the deletion problem and the use of deletion
markers.

Ordered files shorten the time required to read records in order of the ordering field.
The time required to search for an arbitrary record, given the value of its ordering
key field, is also reduced if a binary search is used. However, maintaining the records
in order makes insertion very expensive; thus the technique of using an unordered
overflow file to reduce the cost of record insertion was discussed. Overflow records
are merged with the master file periodically during file reorganization.
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Hashing provides very fast access to an arbitrary record of a file, given the value of
its hash key. The most suitable method for external hashing is the bucket technique,
with one or more contiguous blocks corresponding to each bucket. Collisions caus-
ing bucket overflow are handled by chaining. Access on any nonhash field is slow,
and so is ordered access of the records on any field. We discussed three hashing tech-
niques for files that grow and shrink in the number of records dynamically:
extendible, dynamic, and linear hashing. The first two use the higher-order bits of
the hash address to organize a directory. Linear hashing is geared to keep the load
factor of the file within a given range and adds new buckets linearly.

We briefly discussed other possibilities for primary file organizations, such as B-
trees, and files of mixed records, which implement relationships among records of
different types physically as part of the storage structure. We reviewed the recent
advances in disk technology represented by RAID (Redundant Arrays of
Inexpensive (or Independent) Disks), which has become a standard technique in
large enterprises to provide better reliability and fault tolerance features in storage.
Finally, we reviewed three currently popular options in enterprise storage systems:
storage area networks (SANs), network-attached storage (NAS), and iSCSI storage
systems.

Review Questions
17.1. What is the difference between primary and secondary storage?

17.2. Why are disks, not tapes, used to store online database files?

17.3. Define the following terms: disk, disk pack, track, block, cylinder, sector,
interblock gap, read/write head.

17.4. Discuss the process of disk initialization.

17.5. Discuss the mechanism used to read data from or write data to the disk.

17.6. What are the components of a disk block address?

17.7. Why is accessing a disk block expensive? Discuss the time components
involved in accessing a disk block.

17.8. How does double buffering improve block access time?

17.9. What are the reasons for having variable-length records? What types of sep-
arator characters are needed for each?

17.10. Discuss the techniques for allocating file blocks on disk.

17.11. What is the difference between a file organization and an access method?

17.12. What is the difference between static and dynamic files?

17.13. What are the typical record-at-a-time operations for accessing a file? Which
of these depend on the current file record?

17.14. Discuss the techniques for record deletion.
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17.15. Discuss the advantages and disadvantages of using (a) an unordered file, (b)
an ordered file, and (c) a static hash file with buckets and chaining. Which
operations can be performed efficiently on each of these organizations, and
which operations are expensive?

17.16. Discuss the techniques for allowing a hash file to expand and shrink dynam-
ically. What are the advantages and disadvantages of each?

17.17. What is the difference between the directories of extendible and dynamic
hashing?

17.18. What are mixed files used for? What are other types of primary file organiza-
tions?

17.19. Describe the mismatch between processor and disk technologies.

17.20. What are the main goals of the RAID technology? How does it achieve them?

17.21. How does disk mirroring help improve reliability? Give a quantitative 
example.

17.22. What characterizes the levels in RAID organization?

17.23. What are the highlights of the popular RAID levels 0, 1, and 5?

17.24. What are storage area networks? What flexibility and advantages do they
offer?

17.25. Describe the main features of network-attached storage as an enterprise
storage solution.

17.26. How have new iSCSI systems improved the applicability of storage area net-
works?

Exercises
17.27. Consider a disk with the following characteristics (these are not parameters

of any particular disk unit): block size B = 512 bytes; interblock gap size G =
128 bytes; number of blocks per track = 20; number of tracks per surface =
400. A disk pack consists of 15 double-sided disks.

a. What is the total capacity of a track, and what is its useful capacity
(excluding interblock gaps)?

b. How many cylinders are there?

c. What are the total capacity and the useful capacity of a cylinder?

d. What are the total capacity and the useful capacity of a disk pack?

e. Suppose that the disk drive rotates the disk pack at a speed of 2400 rpm
(revolutions per minute); what are the transfer rate (tr) in bytes/msec and
the block transfer time (btt) in msec? What is the average rotational delay
(rd) in msec? What is the bulk transfer rate? (See Appendix B.)

f. Suppose that the average seek time is 30 msec. How much time does it
take (on the average) in msec to locate and transfer a single block, given
its block address?
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g. Calculate the average time it would take to transfer 20 random blocks,
and compare this with the time it would take to transfer 20 consecutive
blocks using double buffering to save seek time and rotational delay.

17.28. A file has r = 20,000 STUDENT records of fixed length. Each record has the
following fields: Name (30 bytes), Ssn (9 bytes), Address (40 bytes), PHONE
(10 bytes), Birth_date (8 bytes), Sex (1 byte), Major_dept_code (4 bytes),
Minor_dept_code (4 bytes), Class_code (4 bytes, integer), and Degree_program
(3 bytes). An additional byte is used as a deletion marker. The file is stored on
the disk whose parameters are given in Exercise 17.27.

a. Calculate the record size R in bytes.

b. Calculate the blocking factor bfr and the number of file blocks b, assum-
ing an unspanned organization.

c. Calculate the average time it takes to find a record by doing a linear search
on the file if (i) the file blocks are stored contiguously, and double buffer-
ing is used; (ii) the file blocks are not stored contiguously.

d. Assume that the file is ordered by Ssn; by doing a binary search, calculate
the time it takes to search for a record given its Ssn value.

17.29. Suppose that only 80 percent of the STUDENT records from Exercise 17.28
have a value for Phone, 85 percent for Major_dept_code, 15 percent for
Minor_dept_code, and 90 percent for Degree_program; and suppose that we
use a variable-length record file. Each record has a 1-byte field type for each
field in the record, plus the 1-byte deletion marker and a 1-byte end-of-
record marker. Suppose that we use a spanned record organization, where
each block has a 5-byte pointer to the next block (this space is not used for
record storage).

a. Calculate the average record length R in bytes.

b. Calculate the number of blocks needed for the file.

17.30. Suppose that a disk unit has the following parameters: seek time s = 20 msec;
rotational delay rd = 10 msec; block transfer time btt = 1 msec; block size B =
2400 bytes; interblock gap size G = 600 bytes. An EMPLOYEE file has the fol-
lowing fields: Ssn, 9 bytes; Last_name, 20 bytes; First_name, 20 bytes;
Middle_init, 1 byte; Birth_date, 10 bytes; Address, 35 bytes; Phone, 12 bytes;
Supervisor_ssn, 9 bytes; Department, 4 bytes; Job_code, 4 bytes; deletion
marker, 1 byte. The EMPLOYEE file has r = 30,000 records, fixed-length for-
mat, and unspanned blocking. Write appropriate formulas and calculate the
following values for the above EMPLOYEE file:

a. The record size R (including the deletion marker), the blocking factor bfr,
and the number of disk blocks b.

b. Calculate the wasted space in each disk block because of the unspanned
organization.

c. Calculate the transfer rate tr and the bulk transfer rate btr for this disk
unit (see Appendix B for definitions of tr and btr).
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d. Calculate the average number of block accesses needed to search for an
arbitrary record in the file, using linear search.

e. Calculate in msec the average time needed to search for an arbitrary
record in the file, using linear search, if the file blocks are stored on con-
secutive disk blocks and double buffering is used.

f. Calculate in msec the average time needed to search for an arbitrary
record in the file, using linear search, if the file blocks are not stored on
consecutive disk blocks.

g. Assume that the records are ordered via some key field. Calculate the
average number of block accesses and the average time needed to search for
an arbitrary record in the file, using binary search.

17.31. A PARTS file with Part# as the hash key includes records with the following
Part# values: 2369, 3760, 4692, 4871, 5659, 1821, 1074, 7115, 1620, 2428, 3943,
4750, 6975, 4981, and 9208. The file uses eight buckets, numbered 0 to 7. Each
bucket is one disk block and holds two records. Load these records into the
file in the given order, using the hash function h(K) = K mod 8. Calculate the
average number of block accesses for a random retrieval on Part#.

17.32. Load the records of Exercise 17.31 into expandable hash files based on
extendible hashing. Show the structure of the directory at each step, and the
global and local depths. Use the hash function h(K) = K mod 128.

17.33. Load the records of Exercise 17.31 into an expandable hash file, using linear
hashing. Start with a single disk block, using the hash function h0 = K mod
20, and show how the file grows and how the hash functions change as the
records are inserted. Assume that blocks are split whenever an overflow
occurs, and show the value of n at each stage.

17.34. Compare the file commands listed in Section 17.5 to those available on a file
access method you are familiar with.

17.35. Suppose that we have an unordered file of fixed-length records that uses an
unspanned record organization. Outline algorithms for insertion, deletion,
and modification of a file record. State any assumptions you make.

17.36. Suppose that we have an ordered file of fixed-length records and an
unordered overflow file to handle insertion. Both files use unspanned
records. Outline algorithms for insertion, deletion, and modification of a file
record and for reorganizing the file. State any assumptions you make.

17.37. Can you think of techniques other than an unordered overflow file that can
be used to make insertions in an ordered file more efficient?

17.38. Suppose that we have a hash file of fixed-length records, and suppose that
overflow is handled by chaining. Outline algorithms for insertion, deletion,
and modification of a file record. State any assumptions you make.
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17.39. Can you think of techniques other than chaining to handle bucket overflow
in external hashing?

17.40. Write pseudocode for the insertion algorithms for linear hashing and for
extendible hashing.

17.41. Write program code to access individual fields of records under each of the
following circumstances. For each case, state the assumptions you make con-
cerning pointers, separator characters, and so on. Determine the type of
information needed in the file header in order for your code to be general in
each case.

a. Fixed-length records with unspanned blocking

b. Fixed-length records with spanned blocking

c. Variable-length records with variable-length fields and spanned blocking

d. Variable-length records with repeating groups and spanned blocking

e. Variable-length records with optional fields and spanned blocking

f. Variable-length records that allow all three cases in parts c, d, and e

17.42. Suppose that a file initially contains r = 120,000 records of R = 200 bytes
each in an unsorted (heap) file. The block size B = 2400 bytes, the average
seek time s = 16 ms, the average rotational latency rd = 8.3 ms, and the block
transfer time btt = 0.8 ms. Assume that 1 record is deleted for every 2 records
added until the total number of active records is 240,000.

a. How many block transfers are needed to reorganize the file?

b. How long does it take to find a record right before reorganization?

c. How long does it take to find a record right after reorganization?

17.43. Suppose we have a sequential (ordered) file of 100,000 records where each
record is 240 bytes. Assume that B = 2400 bytes, s = 16 ms, rd = 8.3 ms, and
btt = 0.8 ms. Suppose we want to make X independent random record reads
from the file. We could make X random block reads or we could perform one
exhaustive read of the entire file looking for those X records. The question is
to decide when it would be more efficient to perform one exhaustive read of
the entire file than to perform X individual random reads. That is, what is
the value for X when an exhaustive read of the file is more efficient than ran-
dom X reads? Develop this as a function of X.

17.44. Suppose that a static hash file initially has 600 buckets in the primary area
and that records are inserted that create an overflow area of 600 buckets. If
we reorganize the hash file, we can assume that most of the overflow is elim-
inated. If the cost of reorganizing the file is the cost of the bucket transfers
(reading and writing all of the buckets) and the only periodic file operation
is the fetch operation, then how many times would we have to perform a
fetch (successfully) to make the reorganization cost effective? That is, the
reorganization cost and subsequent search cost are less than the search cost
before reorganization. Support your answer. Assume s = 16 ms, rd = 8.3 ms,
and btt = 1 ms.
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17.45. Suppose we want to create a linear hash file with a file load factor of 0.7 and
a blocking factor of 20 records per bucket, which is to contain 112,000
records initially.

a. How many buckets should we allocate in the primary area?

b. What should be the number of bits used for bucket addresses?
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Indexing Structures for Files

In this chapter we assume that a file already exists with
some primary organization such as the unordered,

ordered, or hashed organizations that were described in Chapter 17. We will
describe additional auxiliary access structures called indexes, which are used to
speed up the retrieval of records in response to certain search conditions. The index
structures are additional files on disk that provide secondary access paths, which
provide alternative ways to access the records without affecting the physical place-
ment of records in the primary data file on disk. They enable efficient access to
records based on the indexing fields that are used to construct the index. Basically,
any field of the file can be used to create an index, and multiple indexes on different
fields—as well as indexes on multiple fields—can be constructed on the same file. A
variety of indexes are possible; each of them uses a particular data structure to speed
up the search. To find a record or records in the data file based on a search condition
on an indexing field, the index is searched, which leads to pointers to one or more
disk blocks in the data file where the required records are located. The most preva-
lent types of indexes are based on ordered files (single-level indexes) and tree data
structures (multilevel indexes, B+-trees). Indexes can also be constructed based on
hashing or other search data structures. We also discuss indexes that are vectors of
bits called bitmap indexes.

We describe different types of single-level ordered indexes—primary, secondary,
and clustering—in Section 18.1. By viewing a single-level index as an ordered file,
one can develop additional indexes for it, giving rise to the concept of multilevel
indexes. A popular indexing scheme called ISAM (Indexed Sequential Access
Method) is based on this idea. We discuss multilevel tree-structured indexes in
Section 18.2. In Section 18.3 we describe B-trees and B+-trees, which are data struc-
tures that are commonly used in DBMSs to implement dynamically changing mul-
tilevel indexes. B+-trees have become a commonly accepted default structure for

18chapter 18
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generating indexes on demand in most relational DBMSs. Section 18.4 is devoted to
alternative ways to access data based on a combination of multiple keys. In Section
18.5 we discuss hash indexes and introduce the concept of logical indexes, which
give an additional level of indirection from physical indexes, allowing for the physi-
cal index to be flexible and extensible in its organization. In Section 18.6 we discuss
multikey indexing and bitmap indexes used for searching on one or more keys.
Section 18.7 summarizes the chapter.

18.1 Types of Single-Level Ordered Indexes
The idea behind an ordered index is similar to that behind the index used in a text-
book, which lists important terms at the end of the book in alphabetical order along
with a list of page numbers where the term appears in the book. We can search the
book index for a certain term in the textbook to find a list of addresses—page num-
bers in this case—and use these addresses to locate the specified pages first and then
search for the term on each specified page. The alternative, if no other guidance is
given, would be to sift slowly through the whole textbook word by word to find the
term we are interested in; this corresponds to doing a linear search, which scans the
whole file. Of course, most books do have additional information, such as chapter
and section titles, which help us find a term without having to search through the
whole book. However, the index is the only exact indication of the pages where each
term occurs in the book.

For a file with a given record structure consisting of several fields (or attributes), an
index access structure is usually defined on a single field of a file, called an indexing
field (or indexing attribute).1 The index typically stores each value of the index
field along with a list of pointers to all disk blocks that contain records with that
field value. The values in the index are ordered so that we can do a binary search on
the index. If both the data file and the index file are ordered, and since the index file
is typically much smaller than the data file, searching the index using a binary
search is a better option. Tree-structured multilevel indexes (see Section 18.2)
implement an extension of the binary search idea that reduces the search space by 2-
way partitioning at each search step, thereby creating a more efficient approach that
divides the search space in the file n-ways at each stage.

There are several types of ordered indexes. A primary index is specified on the
ordering key field of an ordered file of records. Recall from Section 17.7 that an
ordering key field is used to physically order the file records on disk, and every record
has a unique value for that field. If the ordering field is not a key field—that is, if
numerous records in the file can have the same value for the ordering field—
another type of index, called a clustering index, can be used. The data file is called a
clustered file in this latter case. Notice that a file can have at most one physical
ordering field, so it can have at most one primary index or one clustering index, but
not both. A third type of index, called a secondary index, can be specified on any

1We use the terms field and attribute interchangeably in this chapter.
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nonordering field of a file. A data file can have several secondary indexes in addition
to its primary access method. We discuss these types of single-level indexes in the
next three subsections.

18.1.1 Primary Indexes
A primary index is an ordered file whose records are of fixed length with two fields,
and it acts like an access structure to efficiently search for and access the data
records in a data file. The first field is of the same data type as the ordering key
field—called the primary key—of the data file, and the second field is a pointer to a
disk block (a block address). There is one index entry (or index record) in the
index file for each block in the data file. Each index entry has the value of the pri-
mary key field for the first record in a block and a pointer to that block as its two
field values. We will refer to the two field values of index entry i as <K(i), P(i)>.

To create a primary index on the ordered file shown in Figure 17.7, we use the Name
field as primary key, because that is the ordering key field of the file (assuming that
each value of Name is unique). Each entry in the index has a Name value and a
pointer. The first three index entries are as follows:

<K(1) = (Aaron, Ed), P(1) = address of block 1>

<K(2) = (Adams, John), P(2) = address of block 2>

<K(3) = (Alexander, Ed), P(3) = address of block 3>

Figure 18.1 illustrates this primary index. The total number of entries in the index is
the same as the number of disk blocks in the ordered data file. The first record in each
block of the data file is called the anchor record of the block, or simply the block
anchor.2

Indexes can also be characterized as dense or sparse. A dense index has an index
entry for every search key value (and hence every record) in the data file. A sparse
(or nondense) index, on the other hand, has index entries for only some of the
search values. A sparse index has fewer entries than the number of records in the
file. Thus, a primary index is a nondense (sparse) index, since it includes an entry
for each disk block of the data file and the keys of its anchor record rather than for
every search value (or every record).

The index file for a primary index occupies a much smaller space than does the data
file, for two reasons. First, there are fewer index entries than there are records in the
data file. Second, each index entry is typically smaller in size than a data record
because it has only two fields; consequently, more index entries than data records
can fit in one block. Therefore, a binary search on the index file requires fewer block
accesses than a binary search on the data file. Referring to Table 17.2, note that the
binary search for an ordered data file required log2b block accesses. But if the pri-
mary index file contains only bi blocks, then to locate a record with a search key

2We can use a scheme similar to the one described here, with the last record in each block (rather than
the first) as the block anchor. This slightly improves the efficiency of the search algorithm.
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Figure 18.1
Primary index on the ordering key field of
the file shown in Figure 17.7.
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value requires a binary search of that index and access to the block containing that
record: a total of log2bi + 1 accesses.

A record whose primary key value is K lies in the block whose address is P(i), where
K(i) ≤ K < K(i + 1). The ith block in the data file contains all such records because
of the physical ordering of the file records on the primary key field. To retrieve a
record, given the value K of its primary key field, we do a binary search on the index
file to find the appropriate index entry i, and then retrieve the data file block whose
address is P(i).3 Example 1 illustrates the saving in block accesses that is attainable
when a primary index is used to search for a record.

Example 1. Suppose that we have an ordered file with r = 30,000 records stored on
a disk with block size B = 1024 bytes. File records are of fixed size and are
unspanned, with record length R = 100 bytes. The blocking factor for the file would
be bfr = ⎣(B/R)⎦ = ⎣(1024/100)⎦ = 10 records per block. The number of blocks
needed for the file is b = ⎡(r/bfr)⎤ = ⎡(30000/10)⎤ = 3000 blocks. A binary search on
the data file would need approximately ⎡log2b⎤= ⎡(log23000)⎤ = 12 block accesses.

Now suppose that the ordering key field of the file is V = 9 bytes long, a block
pointer is P = 6 bytes long, and we have constructed a primary index for the file. The
size of each index entry is Ri = (9 + 6) = 15 bytes, so the blocking factor for the index
is bfri = ⎣(B/Ri)⎦ = ⎣(1024/15)⎦ = 68 entries per block. The total number of index
entries ri is equal to the number of blocks in the data file, which is 3000. The num-
ber of index blocks is hence bi = ⎡(ri/bfri)⎤ = ⎡(3000/68)⎤ = 45 blocks. To perform a
binary search on the index file would need ⎡(log2bi)⎤ = ⎡(log245)⎤ = 6 block
accesses. To search for a record using the index, we need one additional block access
to the data file for a total of 6 + 1 = 7 block accesses—an improvement over binary
search on the data file, which required 12 disk block accesses.

A major problem with a primary index—as with any ordered file—is insertion and
deletion of records. With a primary index, the problem is compounded because if
we attempt to insert a record in its correct position in the data file, we must not only
move records to make space for the new record but also change some index entries,
since moving records will change the anchor records of some blocks. Using an
unordered overflow file, as discussed in Section 17.7, can reduce this problem.
Another possibility is to use a linked list of overflow records for each block in the
data file. This is similar to the method of dealing with overflow records described
with hashing in Section 17.8.2. Records within each block and its overflow linked
list can be sorted to improve retrieval time. Record deletion is handled using dele-
tion markers.

18.1.2 Clustering Indexes
If file records are physically ordered on a nonkey field—which does not have a dis-
tinct value for each record—that field is called the clustering field and the data file

3Notice that the above formula would not be correct if the data file were ordered on a nonkey field; in
that case the same index value in the block anchor could be repeated in the last records of the previous
block.
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is called a clustered file. We can create a different type of index, called a clustering
index, to speed up retrieval of all the records that have the same value for the clus-
tering field. This differs from a primary index, which requires that the ordering field
of the data file have a distinct value for each record.

A clustering index is also an ordered file with two fields; the first field is of the same
type as the clustering field of the data file, and the second field is a disk block
pointer. There is one entry in the clustering index for each distinct value of the clus-
tering field, and it contains the value and a pointer to the first block in the data file
that has a record with that value for its clustering field. Figure 18.2 shows an exam-
ple. Notice that record insertion and deletion still cause problems because the data
records are physically ordered. To alleviate the problem of insertion, it is common to
reserve a whole block (or a cluster of contiguous blocks) for each value of the clus-
tering field; all records with that value are placed in the block (or block cluster). This
makes insertion and deletion relatively straightforward. Figure 18.3 shows this
scheme.

A clustering index is another example of a nondense index because it has an entry
for every distinct value of the indexing field, which is a nonkey by definition and
hence has duplicate values rather than a unique value for every record in the file.
There is some similarity between Figures 18.1, 18.2, and 18.3 and Figures 17.11 and
17.12. An index is somewhat similar to dynamic hashing (described in Section
17.8.3) and to the directory structures used for extendible hashing. Both are
searched to find a pointer to the data block containing the desired record. A main
difference is that an index search uses the values of the search field itself, whereas a
hash directory search uses the binary hash value that is calculated by applying the
hash function to the search field.

18.1.3 Secondary Indexes
A secondary index provides a secondary means of accessing a data file for which
some primary access already exists. The data file records could be ordered,
unordered, or hashed. The secondary index may be created on a field that is a can-
didate key and has a unique value in every record, or on a nonkey field with dupli-
cate values. The index is again an ordered file with two fields. The first field is of the
same data type as some nonordering field of the data file that is an indexing field.
The second field is either a block pointer or a record pointer. Many secondary
indexes (and hence, indexing fields) can be created for the same file—each repre-
sents an additional means of accessing that file based on some specific field.

First we consider a secondary index access structure on a key (unique) field that has
a distinct value for every record. Such a field is sometimes called a secondary key; in
the relational model, this would correspond to any UNIQUE key attribute or to the
primary key attribute of a table. In this case there is one index entry for each record
in the data file, which contains the value of the field for the record and a pointer
either to the block in which the record is stored or to the record itself. Hence, such
an index is dense.
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Figure 18.2
A clustering index on the Dept_number ordering
nonkey field of an EMPLOYEE file.

Again we refer to the two field values of index entry i as <K(i), P(i)>. The entries are
ordered by value of K(i), so we can perform a binary search. Because the records of
the data file are not physically ordered by values of the secondary key field, we cannot
use block anchors. That is why an index entry is created for each record in the data
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Figure 18.4
A dense secondary index (with block pointers) on a nonordering key field of a file.

file, rather than for each block, as in the case of a primary index. Figure 18.4 illustrates
a secondary index in which the pointers P(i) in the index entries are block pointers,
not record pointers. Once the appropriate disk block is transferred to a main memory
buffer, a search for the desired record within the block can be carried out.
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A secondary index usually needs more storage space and longer search time than
does a primary index, because of its larger number of entries. However, the
improvement in search time for an arbitrary record is much greater for a secondary
index than for a primary index, since we would have to do a linear search on the data
file if the secondary index did not exist. For a primary index, we could still use a
binary search on the main file, even if the index did not exist. Example 2 illustrates
the improvement in number of blocks accessed.

Example 2. Consider the file of Example 1 with r = 30,000 fixed-length records of
size R = 100 bytes stored on a disk with block size B = 1024 bytes. The file has b =
3000 blocks, as calculated in Example 1. Suppose we want to search for a record with
a specific value for the secondary key—a nonordering key field of the file that is V =
9 bytes long. Without the secondary index, to do a linear search on the file would
require b/2 = 3000/2 = 1500 block accesses on the average. Suppose that we con-
struct a secondary index on that nonordering key field of the file. As in Example 1, a
block pointer is P = 6 bytes long, so each index entry is Ri = (9 + 6) = 15 bytes, and
the blocking factor for the index is bfri = ⎣(B/Ri)⎦ = ⎣(1024/15)⎦ = 68 entries per
block. In a dense secondary index such as this, the total number of index entries ri is
equal to the number of records in the data file, which is 30,000. The number of blocks
needed for the index is hence bi = ⎡(ri /bfri)⎤ = ⎡(3000/68)⎤ = 442 blocks.

A binary search on this secondary index needs ⎡(log2bi)⎤ = ⎡(log2442)⎤ = 9 block
accesses. To search for a record using the index, we need an additional block access
to the data file for a total of 9 + 1 = 10 block accesses—a vast improvement over the
1500 block accesses needed on the average for a linear search, but slightly worse than
the 7 block accesses required for the primary index. This difference arose because
the primary index was nondense and hence shorter, with only 45 blocks in length.

We can also create a secondary index on a nonkey, nonordering field of a file. In this
case, numerous records in the data file can have the same value for the indexing
field. There are several options for implementing such an index:

■ Option 1 is to include duplicate index entries with the same K(i) value—one
for each record. This would be a dense index.

■ Option 2 is to have variable-length records for the index entries, with a
repeating field for the pointer. We keep a list of pointers <P(i, 1), ..., P(i, k)>
in the index entry for K(i)—one pointer to each block that contains a record
whose indexing field value equals K(i). In either option 1 or option 2, the
binary search algorithm on the index must be modified appropriately to
account for a variable number of index entries per index key value.

■ Option 3, which is more commonly used, is to keep the index entries them-
selves at a fixed length and have a single entry for each index field value, but
to create an extra level of indirection to handle the multiple pointers. In this
nondense scheme, the pointer P(i) in index entry <K(i), P(i)> points to a
disk block, which contains a set of record pointers; each record pointer in that
disk block points to one of the data file records with value K(i) for the index-
ing field. If some value K(i) occurs in too many records, so that their record
pointers cannot fit in a single disk block, a cluster or linked list of blocks is
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Figure 18.5
A secondary index (with
record pointers) on a non-
key field implemented
using one level of indirec-
tion so that index entries
are of fixed length and
have unique field values.

used. This technique is illustrated in Figure 18.5. Retrieval via the index
requires one or more additional block accesses because of the extra level, but
the algorithms for searching the index and (more importantly) for inserting
of new records in the data file are straightforward. In addition, retrievals on
complex selection conditions may be handled by referring to the record
pointers, without having to retrieve many unnecessary records from the data
file (see Exercise 18.23).
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Notice that a secondary index provides a logical ordering on the records by the
indexing field. If we access the records in order of the entries in the secondary index,
we get them in order of the indexing field. The primary and clustering indexes
assume that the field used for physical ordering of records in the file is the same as
the indexing field.

18.1.4 Summary
To conclude this section, we summarize the discussion of index types in two tables.
Table 18.1 shows the index field characteristics of each type of ordered single-level
index discussed—primary, clustering, and secondary. Table 18.2 summarizes the
properties of each type of index by comparing the number of index entries and
specifying which indexes are dense and which use block anchors of the data file.

Table 18.1 Types of Indexes Based on the Properties of the Indexing Field

Index Field Used 
for Physical Ordering 
of the File

Index Field Not Used 
for Physical Ordering 
of the File

Indexing field is key Primary index Secondary index (Key)

Indexing field is nonkey Clustering index Secondary index (NonKey)

Table 18.2 Properties of Index Types

Type of Index
Number of (First-level) 
Index Entries

Dense or Nondense
(Sparse)

Block Anchoring 
on the Data File

Primary Number of blocks in 
data file

Nondense Yes

Clustering Number of distinct 
index field values

Nondense Yes/noa

Secondary (key) Number of records in 
data file

Dense No

Secondary (nonkey) Number of recordsb or
number of distinct index
field valuesc

Dense or Nondense No

aYes if every distinct value of the ordering field starts a new block; no otherwise.
bFor option 1.
cFor options 2 and 3.
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18.2 Multilevel Indexes
The indexing schemes we have described thus far involve an ordered index file. A
binary search is applied to the index to locate pointers to a disk block or to a record
(or records) in the file having a specific index field value. A binary search requires
approximately (log2bi) block accesses for an index with bi blocks because each step
of the algorithm reduces the part of the index file that we continue to search by a
factor of 2. This is why we take the log function to the base 2. The idea behind a
multilevel index is to reduce the part of the index that we continue to search by bfri,
the blocking factor for the index, which is larger than 2. Hence, the search space is
reduced much faster. The value bfri is called the fan-out of the multilevel index, and
we will refer to it by the symbol fo. Whereas we divide the record search space into
two halves at each step during a binary search, we divide it n-ways (where n = the
fan-out) at each search step using the multilevel index. Searching a multilevel index
requires approximately (logfobi) block accesses, which is a substantially smaller
number than for a binary search if the fan-out is larger than 2. In most cases, the
fan-out is much larger than 2.

A multilevel index considers the index file, which we will now refer to as the first (or
base) level of a multilevel index, as an ordered file with a distinct value for each K(i).
Therefore, by considering the first-level index file as a sorted data file, we can create
a primary index for the first level; this index to the first level is called the second
level of the multilevel index. Because the second level is a primary index, we can use
block anchors so that the second level has one entry for each block of the first level.
The blocking factor bfri for the second level—and for all subsequent levels—is the
same as that for the first-level index because all index entries are the same size; each
has one field value and one block address. If the first level has r1 entries, and the
blocking factor—which is also the fan-out—for the index is bfri = fo, then the first
level needs ⎡(r1/fo)⎤ blocks, which is therefore the number of entries r2 needed at the
second level of the index.

We can repeat this process for the second level. The third level, which is a primary
index for the second level, has an entry for each second-level block, so the number
of third-level entries is r3 = ⎡(r2/fo)⎤. Notice that we require a second level only if the
first level needs more than one block of disk storage, and, similarly, we require a
third level only if the second level needs more than one block. We can repeat the
preceding process until all the entries of some index level t fit in a single block. This
block at the tth level is called the top index level.4 Each level reduces the number of
entries at the previous level by a factor of fo—the index fan-out—so we can use the
formula 1 ≤ (r1/((fo)t)) to calculate t. Hence, a multilevel index with r1 first-level
entries will have approximately t levels, where t = ⎡(logfo(r1))⎤. When searching the

4The numbering scheme for index levels used here is the reverse of the way levels are commonly
defined for tree data structures. In tree data structures, t is referred to as level 0 (zero), t – 1 is level 1,
and so on.
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index, a single disk block is retrieved at each level. Hence, t disk blocks are accessed
for an index search, where t is the number of index levels.

The multilevel scheme described here can be used on any type of index—whether it
is primary, clustering, or secondary—as long as the first-level index has distinct val-
ues for K(i) and fixed-length entries. Figure 18.6 shows a multilevel index built over a
primary index. Example 3 illustrates the improvement in number of blocks accessed
when a multilevel index is used to search for a record.

Example 3. Suppose that the dense secondary index of Example 2 is converted into
a multilevel index. We calculated the index blocking factor bfri = 68 index entries
per block, which is also the fan-out fo for the multilevel index; the number of first-
level blocks b1 = 442 blocks was also calculated. The number of second-level blocks
will be b2 = ⎡(b1/fo)⎤ = ⎡(442/68)⎤ = 7 blocks, and the number of third-level blocks
will be b3 = ⎡(b2/fo)⎤ = ⎡(7/68)⎤ = 1 block. Hence, the third level is the top level of
the index, and t = 3. To access a record by searching the multilevel index, we must
access one block at each level plus one block from the data file, so we need t + 1 = 3
+ 1 = 4 block accesses. Compare this to Example 2, where 10 block accesses were
needed when a single-level index and binary search were used.

Notice that we could also have a multilevel primary index, which would be non-
dense. Exercise 18.18(c) illustrates this case, where we must access the data block
from the file before we can determine whether the record being searched for is in
the file. For a dense index, this can be determined by accessing the first index level
(without having to access a data block), since there is an index entry for every record
in the file.

A common file organization used in business data processing is an ordered file with
a multilevel primary index on its ordering key field. Such an organization is called
an indexed sequential file and was used in a large number of early IBM systems.
IBM’s ISAM organization incorporates a two-level index that is closely related to
the organization of the disk in terms of cylinders and tracks (see Section 17.2.1).
The first level is a cylinder index, which has the key value of an anchor record for
each cylinder of a disk pack occupied by the file and a pointer to the track index for
the cylinder. The track index has the key value of an anchor record for each track in
the cylinder and a pointer to the track. The track can then be searched sequentially
for the desired record or block. Insertion is handled by some form of overflow file
that is merged periodically with the data file. The index is recreated during file reor-
ganization.

Algorithm 18.1 outlines the search procedure for a record in a data file that uses a
nondense multilevel primary index with t levels. We refer to entry i at level j of the
index as <Kj(i), Pj(i)>, and we search for a record whose primary key value is K. We
assume that any overflow records are ignored. If the record is in the file, there must
be some entry at level 1 with K1(i) K < K1(i + 1) and the record will be in the block
of the data file whose address is P1(i). Exercise 18.23 discusses modifying the search
algorithm for other types of indexes.
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Figure 18.6
A two-level primary index resembling ISAM (Indexed Sequential
Access Method) organization.
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Algorithm 18.1. Searching a Nondense Multilevel Primary Index with t Levels

(* We assume the index entry to be a block anchor that is the first key per block. *)
p ← address of top-level block of index;
for j ← t step – 1 to 1 do

begin
read the index block (at jth index level) whose address is p;
search block p for entry i such that Kj (i) ≤ K < Kj(i + 1)

(* if Kj(i)
is the last entry in the block, it is sufficient to satisfy Kj(i) ≤ K *);
p ← Pj(i ) (* picks appropriate pointer at jth index level *)

end;
read the data file block whose address is p;
search block p for record with key = K;

As we have seen, a multilevel index reduces the number of blocks accessed when
searching for a record, given its indexing field value. We are still faced with the prob-
lems of dealing with index insertions and deletions, because all index levels are
physically ordered files. To retain the benefits of using multilevel indexing while
reducing index insertion and deletion problems, designers adopted a multilevel
index called a dynamic multilevel index that leaves some space in each of its blocks
for inserting new entries and uses appropriate insertion/deletion algorithms for cre-
ating and deleting new index blocks when the data file grows and shrinks. It is often
implemented by using data structures called B-trees and B+-trees, which we
describe in the next section.

18.3 Dynamic Multilevel Indexes Using 
B-Trees and B+-Trees

B-trees and B+-trees are special cases of the well-known search data structure
known as a tree. We briefly introduce the terminology used in discussing tree data
structures. A tree is formed of nodes. Each node in the tree, except for a special
node called the root, has one parent node and zero or more child nodes. The root
node has no parent. A node that does not have any child nodes is called a leaf node;
a nonleaf node is called an internal node. The level of a node is always one more
than the level of its parent, with the level of the root node being zero.5 A subtree of
a node consists of that node and all its descendant nodes—its child nodes, the child
nodes of its child nodes, and so on. A precise recursive definition of a subtree is that
it consists of a node n and the subtrees of all the child nodes of n. Figure 18.7 illus-
trates a tree data structure. In this figure the root node is A, and its child nodes are
B, C, and D. Nodes E, J, C, G, H, and K are leaf nodes. Since the leaf nodes are at dif-
ferent levels of the tree, this tree is called unbalanced.

5This standard definition of the level of a tree node, which we use throughout Section 18.3, is different
from the one we gave for multilevel indexes in Section 18.2.
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Figure 18.7
A tree data structure that shows an unbalanced tree.

In Section 18.3.1, we introduce search trees and then discuss B-trees, which can be
used as dynamic multilevel indexes to guide the search for records in a data file. B-
tree nodes are kept between 50 and 100 percent full, and pointers to the data blocks
are stored in both internal nodes and leaf nodes of the B-tree structure. In Section
18.3.2 we discuss B+-trees, a variation of B-trees in which pointers to the data blocks
of a file are stored only in leaf nodes, which can lead to fewer levels and higher-
capacity indexes. In the DBMSs prevalent in the market today, the common struc-
ture used for indexing is B+-trees.

18.3.1 Search Trees and B-Trees
A search tree is a special type of tree that is used to guide the search for a record,
given the value of one of the record’s fields. The multilevel indexes discussed in
Section 18.2 can be thought of as a variation of a search tree; each node in the mul-
tilevel index can have as many as fo pointers and fo key values, where fo is the index
fan-out. The index field values in each node guide us to the next node, until we
reach the data file block that contains the required records. By following a pointer,
we restrict our search at each level to a subtree of the search tree and ignore all
nodes not in this subtree.

Search Trees. A search tree is slightly different from a multilevel index. A search
tree of order p is a tree such that each node contains at most p − 1 search values and
p pointers in the order <P1, K1, P2, K2, ..., Pq−1, Kq−1, Pq>, where q ≤ p. Each Pi is a
pointer to a child node (or a NULL pointer), and each Ki is a search value from some
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ordered set of values. All search values are assumed to be unique.6 Figure 18.8 illus-
trates a node in a search tree. Two constraints must hold at all times on the search
tree:

1. Within each node, K1 < K2 < ... < Kq−1.

2. For all values X in the subtree pointed at by Pi, we have Ki−1 < X < Ki for 1 <
i < q; X < Ki for i = 1; and Ki−1 < X for i = q (see Figure 18.8).

Whenever we search for a value X, we follow the appropriate pointer Pi according to
the formulas in condition 2 above. Figure 18.9 illustrates a search tree of order p = 3
and integer search values. Notice that some of the pointers Pi in a node may be NULL
pointers.

We can use a search tree as a mechanism to search for records stored in a disk file.
The values in the tree can be the values of one of the fields of the file, called 
the search field (which is the same as the index field if a multilevel index guides the
search). Each key value in the tree is associated with a pointer to the record in the
data file having that value. Alternatively, the pointer could be to the disk block con-
taining that record. The search tree itself can be stored on disk by assigning each tree
node to a disk block. When a new record is inserted in the file, we must update the
search tree by inserting an entry in the tree containing the search field value of the
new record and a pointer to the new record.

6This restriction can be relaxed. If the index is on a nonkey field, duplicate search values may exist and
the node structure and the navigation rules for the tree may be modified.
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Algorithms are necessary for inserting and deleting search values into and from the
search tree while maintaining the preceding two constraints. In general, these algo-
rithms do not guarantee that a search tree is balanced, meaning that all of its leaf
nodes are at the same level.7 The tree in Figure 18.7 is not balanced because it has
leaf nodes at levels 1, 2, and 3. The goals for balancing a search tree are as follows:

■ To guarantee that nodes are evenly distributed, so that the depth of the tree
is minimized for the given set of keys and that the tree does not get skewed
with some nodes being at very deep levels

■ To make the search speed uniform, so that the average time to find any ran-
dom key is roughly the same

While minimizing the number of levels in the tree is one goal, another implicit goal
is to make sure that the index tree does not need too much restructuring as records
are inserted into and deleted from the main file. Thus we want the nodes to be as full
as possible and do not want any nodes to be empty if there are too many deletions.
Record deletion may leave some nodes in the tree nearly empty, thus wasting storage
space and increasing the number of levels. The B-tree addresses both of these prob-
lems by specifying additional constraints on the search tree.

B-Trees. The B-tree has additional constraints that ensure that the tree is always
balanced and that the space wasted by deletion, if any, never becomes excessive. The
algorithms for insertion and deletion, though, become more complex in order to
maintain these constraints. Nonetheless, most insertions and deletions are simple
processes; they become complicated only under special circumstances—namely,
whenever we attempt an insertion into a node that is already full or a deletion from
a node that makes it less than half full. More formally, a B-tree of order p, when
used as an access structure on a key field to search for records in a data file, can be
defined as follows:

1. Each internal node in the B-tree (Figure 18.10(a)) is of the form

<P1, <K1, Pr1>, P2, <K2, Pr2>, ..., <Kq–1, Prq–1>, Pq>

where q ≤ p. Each Pi is a tree pointer—a pointer to another node in the B-
tree. Each Pri is a data pointer8—a pointer to the record whose search key
field value is equal to Ki (or to the data file block containing that record).

2. Within each node, K1 < K2 < ... < Kq−1.

3. For all search key field values X in the subtree pointed at by Pi (the ith sub-
tree, see Figure 18.10(a)), we have:

Ki–1 < X < Ki for 1 < i < q; X < Ki for i = 1; and Ki–1 < X for i = q.

4. Each node has at most p tree pointers.

7The definition of balanced is different for binary trees. Balanced binary trees are known as AVL trees.
8A data pointer is either a block address or a record address; the latter is essentially a block address and
a record offset within the block.
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B-tree structures. (a) A node in a B-tree with q – 1 search values. (b) A B-tree
of order p = 3.The values were inserted in the order 8, 5, 1, 7, 3, 12, 9, 6.

5. Each node, except the root and leaf nodes, has at least ⎡(p/2)⎤ tree pointers.
The root node has at least two tree pointers unless it is the only node in the
tree.

6. A node with q tree pointers, q ≤ p, has q – 1 search key field values (and hence
has q – 1 data pointers).

7. All leaf nodes are at the same level. Leaf nodes have the same structure as
internal nodes except that all of their tree pointers Pi are NULL.

Figure 18.10(b) illustrates a B-tree of order p = 3. Notice that all search values K in
the B-tree are unique because we assumed that the tree is used as an access structure
on a key field. If we use a B-tree on a nonkey field, we must change the definition of
the file pointers Pri to point to a block—or a cluster of blocks—that contain the
pointers to the file records. This extra level of indirection is similar to option 3, dis-
cussed in Section 18.1.3, for secondary indexes.

A B-tree starts with a single root node (which is also a leaf node) at level 0 (zero).
Once the root node is full with p – 1 search key values and we attempt to insert
another entry in the tree, the root node splits into two nodes at level 1. Only the
middle value is kept in the root node, and the rest of the values are split evenly
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between the other two nodes. When a nonroot node is full and a new entry is
inserted into it, that node is split into two nodes at the same level, and the middle
entry is moved to the parent node along with two pointers to the new split nodes. If
the parent node is full, it is also split. Splitting can propagate all the way to the root
node, creating a new level if the root is split. We do not discuss algorithms for B-
trees in detail in this book,9 but we outline search and insertion procedures for 
B+-trees in the next section.

If deletion of a value causes a node to be less than half full, it is combined with its
neighboring nodes, and this can also propagate all the way to the root. Hence, dele-
tion can reduce the number of tree levels. It has been shown by analysis and simula-
tion that, after numerous random insertions and deletions on a B-tree, the nodes
are approximately 69 percent full when the number of values in the tree stabilizes.
This is also true of B+-trees. If this happens, node splitting and combining will
occur only rarely, so insertion and deletion become quite efficient. If the number of
values grows, the tree will expand without a problem—although splitting of nodes
may occur, so some insertions will take more time. Each B-tree node can have at
most p tree pointers, p – 1 data pointers, and p – 1 search key field values (see Figure
18.10(a)).

In general, a B-tree node may contain additional information needed by the algo-
rithms that manipulate the tree, such as the number of entries q in the node and a
pointer to the parent node. Next, we illustrate how to calculate the number of blocks
and levels for a B-tree.

Example 4. Suppose that the search field is a nonordering key field, and we con-
struct a B-tree on this field with p = 23. Assume that each node of the B-tree is 69
percent full. Each node, on the average, will have p * 0.69 = 23 * 0.69 or approxi-
mately 16 pointers and, hence, 15 search key field values. The average fan-out fo =
16. We can start at the root and see how many values and pointers can exist, on the
average, at each subsequent level:

Root: 1 node 15 key entries 16 pointers
Level 1: 16 nodes 240 key entries 256 pointers
Level 2: 256 nodes 3840 key entries 4096 pointers
Level 3: 4096 nodes 61,440 key entries

At each level, we calculated the number of key entries by multiplying the total num-
ber of pointers at the previous level by 15, the average number of entries in each
node. Hence, for the given block size, pointer size, and search key field size, a two-
level B-tree holds 3840 + 240 + 15 = 4095 entries on the average; a three-level B-tree
holds 65,535 entries on the average.

B-trees are sometimes used as primary file organizations. In this case, whole records
are stored within the B-tree nodes rather than just the <search key, record pointer>
entries. This works well for files with a relatively small number of records and a small

9For details on insertion and deletion algorithms for B-trees, consult Ramakrishnan and Gehrke [2003].
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record size. Otherwise, the fan-out and the number of levels become too great to
permit efficient access.

In summary, B-trees provide a multilevel access structure that is a balanced tree
structure in which each node is at least half full. Each node in a B-tree of order p can
have at most p − 1 search values.

18.3.2 B+-Trees
Most implementations of a dynamic multilevel index use a variation of the B-tree
data structure called a B+-tree. In a B-tree, every value of the search field appears
once at some level in the tree, along with a data pointer. In a B+-tree, data pointers
are stored only at the leaf nodes of the tree; hence, the structure of leaf nodes differs
from the structure of internal nodes. The leaf nodes have an entry for every value of
the search field, along with a data pointer to the record (or to the block that contains
this record) if the search field is a key field. For a nonkey search field, the pointer
points to a block containing pointers to the data file records, creating an extra level
of indirection.

The leaf nodes of the B+-tree are usually linked to provide ordered access on the
search field to the records. These leaf nodes are similar to the first (base) level of an
index. Internal nodes of the B+-tree correspond to the other levels of a multilevel
index. Some search field values from the leaf nodes are repeated in the internal
nodes of the B+-tree to guide the search. The structure of the internal nodes of a B+-
tree of order p (Figure 18.11(a)) is as follows:

1. Each internal node is of the form

<P1, K1, P2, K2, ..., Pq – 1, Kq –1, Pq>

where q ≤ p and each Pi is a tree pointer.

2. Within each internal node, K1 < K2 < ... < Kq−1.

3. For all search field values X in the subtree pointed at by Pi, we have Ki−1 < X
≤ Ki for 1 < i < q; X ≤ Ki for i = 1; and Ki−1 < X for i = q (see Figure
18.11(a)).10

4. Each internal node has at most p tree pointers.

5. Each internal node, except the root, has at least ⎡(p/2)⎤ tree pointers. The
root node has at least two tree pointers if it is an internal node.

6. An internal node with q pointers, q ≤ p, has q − 1 search field values.

The structure of the leaf nodes of a B+-tree of order p (Figure 18.11(b)) is as follows:

1. Each leaf node is of the form

<<K1, Pr1>, <K2, Pr2>, ..., <Kq–1, Prq–1>, Pnext>

where q ≤ p, each Pri is a data pointer, and Pnext points to the next leaf node of
the B+-tree.

10Our definition follows Knuth (1998). One can define a B+-tree differently by exchanging the < and 
symbols (Ki−1 X < Ki; Kq−1 ≤ X), but the principles remain the same.
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The nodes of a B+-tree. (a) Internal node of a B+-tree with q – 1 search values.
(b) Leaf node of a B+-tree with q – 1 search values and q – 1 data pointers.

2. Within each leaf node, K1 ≤ K2 ... , Kq−1, q ≤ p.

3. Each Pri is a data pointer that points to the record whose search field value is
Ki or to a file block containing the record (or to a block of record pointers
that point to records whose search field value is Ki if the search field is not a
key).

4. Each leaf node has at least ⎡(p/2)⎤ values.

5. All leaf nodes are at the same level.

The pointers in internal nodes are tree pointers to blocks that are tree nodes, whereas
the pointers in leaf nodes are data pointers to the data file records or blocks—except
for the Pnext pointer, which is a tree pointer to the next leaf node. By starting at the
leftmost leaf node, it is possible to traverse leaf nodes as a linked list, using the Pnext
pointers. This provides ordered access to the data records on the indexing field. A
Pprevious pointer can also be included. For a B+-tree on a nonkey field, an extra level
of indirection is needed similar to the one shown in Figure 18.5, so the Pr pointers
are block pointers to blocks that contain a set of record pointers to the actual
records in the data file, as discussed in option 3 of Section 18.1.3.

Because entries in the internal nodes of a B+-tree include search values and tree
pointers without any data pointers, more entries can be packed into an internal node
of a B+-tree than for a similar B-tree. Thus, for the same block (node) size, the order
p will be larger for the B+-tree than for the B-tree, as we illustrate in Example 5. This
can lead to fewer B+-tree levels, improving search time. Because the structures for
internal and for leaf nodes of a B+-tree are different, the order p can be different. We
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will use p to denote the order for internal nodes and pleaf to denote the order for leaf
nodes, which we define as being the maximum number of data pointers in a leaf
node.

Example 5. To calculate the order p of a B+-tree, suppose that the search key field
is V = 9 bytes long, the block size is B = 512 bytes, a record pointer is Pr = 7 bytes,
and a block pointer is P = 6 bytes. An internal node of the B+-tree can have up to p
tree pointers and p – 1 search field values; these must fit into a single block. Hence,
we have:

(p * P) + ((p – 1) * V) ≤ B

(P * 6) + ((P − 1) * 9) ≤ 512

(15 * p) ≤ 521

We can choose p to be the largest value satisfying the above inequality, which gives 
p = 34. This is larger than the value of 23 for the B-tree (it is left to the reader to
compute the order of the B-tree assuming same size pointers), resulting in a larger
fan-out and more entries in each internal node of a B+-tree than in the correspon-
ding B-tree. The leaf nodes of the B+-tree will have the same number of values and
pointers, except that the pointers are data pointers and a next pointer. Hence, the
order pleaf for the leaf nodes can be calculated as follows:

(pleaf * (Pr + V)) + P ≤ B

(pleaf * (7 + 9)) + 6 ≤ 512

(16 * pleaf) ≤ 506

It follows that each leaf node can hold up to pleaf = 31 key value/data pointer combi-
nations, assuming that the data pointers are record pointers.

As with the B-tree, we may need additional information—to implement the inser-
tion and deletion algorithms—in each node. This information can include the type
of node (internal or leaf), the number of current entries q in the node, and pointers
to the parent and sibling nodes. Hence, before we do the above calculations for p
and pleaf, we should reduce the block size by the amount of space needed for all such
information. The next example illustrates how we can calculate the number of
entries in a B+-tree.

Example 6. Suppose that we construct a B+-tree on the field in Example 5. To cal-
culate the approximate number of entries in the B+-tree, we assume that each node
is 69 percent full. On the average, each internal node will have 34 * 0.69 or approxi-
mately 23 pointers, and hence 22 values. Each leaf node, on the average, will hold
0.69 * pleaf = 0.69 * 31 or approximately 21 data record pointers. A B+-tree will have
the following average number of entries at each level:

Root: 1 node 22 key entries 23 pointers
Level 1: 23 nodes 506 key entries 529 pointers
Level 2: 529 nodes 11,638 key entries 12,167 pointers
Leaf level: 12,167 nodes 255,507 data record pointers
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For the block size, pointer size, and search field size given above, a three-level B+-
tree holds up to 255,507 record pointers, with the average 69 percent occupancy of
nodes. Compare this to the 65,535 entries for the corresponding B-tree in Example
4. This is the main reason that B+-trees are preferred to B-trees as indexes to data-
base files.

Search, Insertion, and Deletion with B+-Trees. Algorithm 18.2 outlines the
procedure using the B+-tree as the access structure to search for a record. Algorithm
18.3 illustrates the procedure for inserting a record in a file with a B+-tree access
structure. These algorithms assume the existence of a key search field, and they
must be modified appropriately for the case of a B+-tree on a nonkey field. We illus-
trate insertion and deletion with an example.

Algorithm 18.2. Searching for a Record with Search Key Field Value K, Using
a B+-tree

n ← block containing root node of B+-tree;
read block n;
while (n is not a leaf node of the B+-tree) do

begin
q ← number of tree pointers in node n;
if K ≤ n.K1 (*n.Ki refers to the ith search field value in node n*)

then n ← n.P1 (*n.Pi refers to the ith tree pointer in node n*)
else if K > n.Kq−1

then n ← n.Pq
else begin

search node n for an entry i such that n.Ki−1 < K ≤n.Ki;
n ← n.Pi
end;

read block n
end;

search block n for entry (Ki, Pri) with K = Ki; (* search leaf node *)
if found

then read data file block with address Pri and retrieve record
else the record with search field value K is not in the data file;

Algorithm 18.3. Inserting a Record with Search Key Field Value K in a B+-tree
of Order p

n ← block containing root node of B+-tree;
read block n; set stack S to empty;
while (n is not a leaf node of the B+-tree) do

begin
push address of n on stack S;

(*stack S holds parent nodes that are needed in case of split*)
q ← number of tree pointers in node n;
if K ≤n.K1 (*n.Ki refers to the ith search field value in node n*)
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then n ← n.P1 (*n.Pi refers to the ith tree pointer in node n*)
else if K > n.Kq−1

then n ← n.Pq
else begin

search node n for an entry i such that n.Ki−1 < K n.Ki;
n ← n.Pi
end;

read block n
end;

search block n for entry (Ki,Pri) with K = Ki; (*search leaf node n*)
if found

then record already in file; cannot insert
else (*insert entry in B+-tree to point to record*)

begin
create entry (K, Pr) where Pr points to the new record;
if leaf node n is not full

then insert entry (K, Pr) in correct position in leaf node n
else begin (*leaf node n is full with pleaf record pointers; is split*)

copy n to temp (*temp is an oversize leaf node to hold extra
entries*);

insert entry (K, Pr) in temp in correct position;
(*temp now holds pleaf + 1 entries of the form (Ki, Pri)*)
new ← a new empty leaf node for the tree; new.Pnext ← n.Pnext ;
j ← ⎡(pleaf + 1)/2 ⎤ ;
n ← first j entries in temp (up to entry (Kj, Prj)); n.Pnext ← new;
new ← remaining entries in temp; K ← Kj ;
(*now we must move (K, new) and insert in parent internal node;

however, if parent is full, split may propagate*)
finished ← false;
repeat
if stack S is empty

then (*no parent node; new root node is created for the tree*)
begin
root ← a new empty internal node for the tree;
root ← <n, K, new>; finished ← true;
end

else begin
n ← pop stack S;
if internal node n is not full

then
begin (*parent node not full; no split*)
insert (K, new) in correct position in internal node n;
finished ← true
end

else begin (*internal node n is full with p tree pointers;
overflow condition; node is split*)
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copy n to temp (*temp is an oversize internal node*);
insert (K, new) in temp in correct position;
(*temp now has p + 1 tree pointers*)
new ← a new empty internal node for the tree;
j ← ⎣((p + 1)/2⎦ ;
n ← entries up to tree pointer Pj in temp;
(*n contains <P1, K1, P2, K2, ..., Pj−1, Kj−1, Pj >*)
new ← entries from tree pointer Pj+1 in temp;
(*new contains < Pj+1, Kj+1, ..., Kp−1, Pp, Kp, Pp+1 >*)
K ← Kj
(*now we must move (K, new) and insert in parent

internal node*)
end

end
until finished
end;

end;

Figure 18.12 illustrates insertion of records in a B+-tree of order p = 3 and pleaf = 2.
First, we observe that the root is the only node in the tree, so it is also a leaf node. As
soon as more than one level is created, the tree is divided into internal nodes and
leaf nodes. Notice that every key value must exist at the leaf level, because all data
pointers are at the leaf level. However, only some values exist in internal nodes to
guide the search. Notice also that every value appearing in an internal node also
appears as the rightmost value in the leaf level of the subtree pointed at by the tree
pointer to the left of the value.

When a leaf node is full and a new entry is inserted there, the node overflows and
must be split. The first j = ⎡((pleaf + 1)/2)⎤ entries in the original node are kept
there, and the remaining entries are moved to a new leaf node. The jth search value
is replicated in the parent internal node, and an extra pointer to the new node is cre-
ated in the parent. These must be inserted in the parent node in their correct
sequence. If the parent internal node is full, the new value will cause it to overflow
also, so it must be split. The entries in the internal node up to Pj—the jth tree
pointer after inserting the new value and pointer, where j = ⎣((p + 1)/2)⎦—are kept,
while the jth search value is moved to the parent, not replicated. A new internal
node will hold the entries from Pj+1 to the end of the entries in the node (see
Algorithm 18.3). This splitting can propagate all the way up to create a new root
node and hence a new level for the B+-tree.

Figure 18.13 illustrates deletion from a B+-tree. When an entry is deleted, it is always
removed from the leaf level. If it happens to occur in an internal node, it must also
be removed from there. In the latter case, the value to its left in the leaf node must
replace it in the internal node because that value is now the rightmost entry in the
subtree. Deletion may cause underflow by reducing the number of entries in the
leaf node to below the minimum required. In this case, we try to find a sibling leaf
node—a leaf node directly to the left or to the right of the node with underflow—
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0

Figure 18.12
An example of insertion in a B+-tree with p = 3 and pleaf = 2.
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(redistribute)
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Figure 18.13
An example of deletion from a B+-tree.

and redistribute the entries among the node and its sibling so that both are at least
half full; otherwise, the node is merged with its siblings and the number of leaf
nodes is reduced. A common method is to try to redistribute entries with the left
sibling; if this is not possible, an attempt to redistribute with the right sibling is
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made. If this is also not possible, the three nodes are merged into two leaf nodes. In
such a case, underflow may propagate to internal nodes because one fewer tree
pointer and search value are needed. This can propagate and reduce the tree levels.

Notice that implementing the insertion and deletion algorithms may require parent
and sibling pointers for each node, or the use of a stack as in Algorithm 18.3. Each
node should also include the number of entries in it and its type (leaf or internal).
Another alternative is to implement insertion and deletion as recursive
procedures.11

Variations of B-Trees and B+-Trees. To conclude this section, we briefly men-
tion some variations of B-trees and B+-trees. In some cases, constraint 5 on the B-
tree (or for the internal nodes of the B+–tree, except the root node), which requires
each node to be at least half full, can be changed to require each node to be at least
two-thirds full. In this case the B-tree has been called a B*-tree. In general, some
systems allow the user to choose a fill factor between 0.5 and 1.0, where the latter
means that the B-tree (index) nodes are to be completely full. It is also possible to
specify two fill factors for a B+-tree: one for the leaf level and one for the internal
nodes of the tree. When the index is first constructed, each node is filled up to
approximately the fill factors specified. Some investigators have suggested relaxing
the requirement that a node be half full, and instead allow a node to become com-
pletely empty before merging, to simplify the deletion algorithm. Simulation studies
show that this does not waste too much additional space under randomly distrib-
uted insertions and deletions.

18.4 Indexes on Multiple Keys
In our discussion so far, we have assumed that the primary or secondary keys on
which files were accessed were single attributes (fields). In many retrieval and
update requests, multiple attributes are involved. If a certain combination of attrib-
utes is used frequently, it is advantageous to set up an access structure to provide
efficient access by a key value that is a combination of those attributes.

For example, consider an EMPLOYEE file containing attributes Dno (department
number), Age, Street, City, Zip_code, Salary and Skill_code, with the key of Ssn (Social
Security number). Consider the query: List the employees in department number 4
whose age is 59. Note that both Dno and Age are nonkey attributes, which means that
a search value for either of these will point to multiple records. The following alter-
native search strategies may be considered:

1. Assuming Dno has an index, but Age does not, access the records having 
Dno = 4 using the index, and then select from among them those records that
satisfy Age = 59.

11For more details on insertion and deletion algorithms for B+ trees, consult Ramakrishnan and Gehrke
[2003].
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2. Alternately, if Age is indexed but Dno is not, access the records having Age =
59 using the index, and then select from among them those records that sat-
isfy Dno = 4.

3. If indexes have been created on both Dno and Age, both indexes may be used;
each gives a set of records or a set of pointers (to blocks or records). An inter-
section of these sets of records or pointers yields those records or pointers
that satisfy both conditions.

All of these alternatives eventually give the correct result. However, if the set of
records that meet each condition (Dno = 4 or Age = 59) individually are large, yet
only a few records satisfy the combined condition, then none of the above is an effi-
cient technique for the given search request. A number of possibilities exist that
would treat the combination < Dno, Age> or < Age, Dno> as a search key made up of
multiple attributes. We briefly outline these techniques in the following sections. We
will refer to keys containing multiple attributes as composite keys.

18.4.1 Ordered Index on Multiple Attributes
All the discussion in this chapter so far still applies if we create an index on a search
key field that is a combination of <Dno, Age>. The search key is a pair of values <4,
59> in the above example. In general, if an index is created on attributes <A1, A2, ...,
An>, the search key values are tuples with n values: <v1, v2, ..., vn>.

A lexicographic ordering of these tuple values establishes an order on this compos-
ite search key. For our example, all of the department keys for department number
3 precede those for department number 4. Thus <3, n> precedes <4, m> for any val-
ues of m and n. The ascending key order for keys with Dno = 4 would be <4, 18>, <4,
19>, <4, 20>, and so on. Lexicographic ordering works similarly to ordering of
character strings. An index on a composite key of n attributes works similarly to any
index discussed in this chapter so far.

18.4.2 Partitioned Hashing
Partitioned hashing is an extension of static external hashing (Section 17.8.2) that
allows access on multiple keys. It is suitable only for equality comparisons; range
queries are not supported. In partitioned hashing, for a key consisting of n compo-
nents, the hash function is designed to produce a result with n separate hash
addresses. The bucket address is a concatenation of these n addresses. It is then pos-
sible to search for the required composite search key by looking up the appropriate
buckets that match the parts of the address in which we are interested.

For example, consider the composite search key <Dno, Age>. If Dno and Age are
hashed into a 3-bit and 5-bit address respectively, we get an 8-bit bucket address.
Suppose that Dno = 4 has a hash address ‘100’ and Age = 59 has hash address ‘10101’.
Then to search for the combined search value, Dno = 4 and Age = 59, one goes to
bucket address 100 10101; just to search for all employees with Age = 59, all buckets
(eight of them) will be searched whose addresses are ‘000 10101’, ‘001 10101’, ... and
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Figure 18.14
Example of a grid array on Dno and Age attributes.

so on. An advantage of partitioned hashing is that it can be easily extended to any
number of attributes. The bucket addresses can be designed so that high-order bits
in the addresses correspond to more frequently accessed attributes. Additionally, no
separate access structure needs to be maintained for the individual attributes. The
main drawback of partitioned hashing is that it cannot handle range queries on any
of the component attributes.

18.4.3 Grid Files
Another alternative is to organize the EMPLOYEE file as a grid file. If we want to
access a file on two keys, say Dno and Age as in our example, we can construct a grid
array with one linear scale (or dimension) for each of the search attributes. Figure
18.14 shows a grid array for the EMPLOYEE file with one linear scale for Dno and
another for the Age attribute. The scales are made in a way as to achieve a uniform
distribution of that attribute. Thus, in our example, we show that the linear scale for
Dno has Dno = 1, 2 combined as one value 0 on the scale, while Dno = 5 corresponds
to the value 2 on that scale. Similarly, Age is divided into its scale of 0 to 5 by group-
ing ages so as to distribute the employees uniformly by age. The grid array shown
for this file has a total of 36 cells. Each cell points to some bucket address where the
records corresponding to that cell are stored. Figure 18.14 also shows the assign-
ment of cells to buckets (only partially).

Thus our request for Dno = 4 and Age = 59 maps into the cell (1, 5) corresponding
to the grid array. The records for this combination will be found in the correspond-
ing bucket. This method is particularly useful for range queries that would map into
a set of cells corresponding to a group of values along the linear scales. If a range
query corresponds to a match on the some of the grid cells, it can be processed by
accessing exactly the buckets for those grid cells. For example, a query for Dno ≤ 5



18.5 Other Types of Indexes 663

and Age > 40 refers to the data in the top bucket shown in Figure 18.14. The grid file
concept can be applied to any number of search keys. For example, for n search keys,
the grid array would have n dimensions. The grid array thus allows a partitioning of
the file along the dimensions of the search key attributes and provides an access by
combinations of values along those dimensions. Grid files perform well in terms of
reduction in time for multiple key access. However, they represent a space overhead
in terms of the grid array structure. Moreover, with dynamic files, a frequent reor-
ganization of the file adds to the maintenance cost.12

18.5 Other Types of Indexes

18.5.1 Hash Indexes
It is also possible to create access structures similar to indexes that are based on
hashing. The hash index is a secondary structure to access the file by using hashing
on a search key other than the one used for the primary data file organization. The
index entries are of the type <K, Pr> or <K, P>, where Pr is a pointer to the record
containing the key, or P is a pointer to the block containing the record for that key.
The index file with these index entries can be organized as a dynamically expand-
able hash file, using one of the techniques described in Section 17.8.3; searching for
an entry uses the hash search algorithm on K. Once an entry is found, the pointer Pr
(or P) is used to locate the corresponding record in the data file. Figure 18.15 illus-
trates a hash index on the Emp_id field for a file that has been stored as a sequential
file ordered by Name. The Emp_id is hashed to a bucket number by using a hashing
function: the sum of the digits of Emp_id modulo 10. For example, to find Emp_id
51024, the hash function results in bucket number 2; that bucket is accessed first. It
contains the index entry < 51024, Pr >; the pointer Pr leads us to the actual record
in the file. In a practical application, there may be thousands of buckets; the bucket
number, which may be several bits long, would be subjected to the directory
schemes discussed about dynamic hashing in Section 17.8.3. Other search struc-
tures can also be used as indexes.

18.5.2 Bitmap Indexes
The bitmap index is another popular data structure that facilitates querying on
multiple keys. Bitmap indexing is used for relations that contain a large number of
rows. It creates an index for one or more columns, and each value or value range in
those columns is indexed. Typically, a bitmap index is created for those columns
that contain a fairly small number of unique values. To build a bitmap index on a set
of records in a relation, the records must be numbered from 0 to n with an id (a
record id or a row id) that can be mapped to a physical address made of a block
number and a record offset within the block.

12Insertion/deletion algorithms for grid files may be found in Nievergelt et al. (1984).
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Figure 18.15
Hash-based indexing.

A bitmap index is built on one particular value of a particular field (the column in a
relation) and is just an array of bits. Consider a bitmap index for the column C and
a value V for that column. For a relation with n rows, it contains n bits. The ith bit is
set to 1 if the row i has the value V for column C; otherwise it is set to a 0. If C con-
tains the valueset <v1, v2, ..., vm> with m distinct values, then m bitmap indexes
would be created for that column. Figure 18.16 shows the relation EMPLOYEE with
columns Emp_id, Lname, Sex, Zipcode, and Salary_grade (with just 8 rows for illustra-
tion) and a bitmap index for the Sex and Zipcode columns. As an example, if the
bitmap for Sex = F, the bits for Row_ids 1, 3, 4, and 7 are set to 1, and the rest of the
bits are set to 0, the bitmap indexes could have the following query applications:

■ For the query C1 = V1 , the corresponding bitmap for value V1 returns the
Row_ids containing the rows that qualify.
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EMPLOYEE

Row_id Emp_id Lname Sex Zipcode Salary_grade
0 51024 Bass M 94040 ..
1 23402 Clarke F 30022 ..
2 62104 England M 19046 ..
3 34723 Ferragamo F 30022 ..
4 81165 Gucci F 19046 ..
5 13646 Hanson M 19046 ..
6 12676 Marcus M 30022 ..
7 41301 Zara F 94040 ..

Bitmap index for Sex

        M          F
10100110 01011001

Bitmap index for Zipcode

Zipcode 19046 Zipcode 30022 Zipcode 94040
    00101100     01010010     10000001

Figure 18.16
Bitmap indexes for
Sex and Zipcode

■ For the query C1= V1 and C2 = V2 (a multikey search request), the two cor-
responding bitmaps are retrieved and intersected (logically AND-ed) to
yield the set of Row_ids that qualify. In general, k bitvectors can be intersected
to deal with k equality conditions. Complex AND-OR conditions can also be
supported using bitmap indexing.

■ To retrieve a count of rows that qualify for the condition C1 = V1, the “1”
entries in the corresponding bitvector are counted.

■ Queries with negation, such as C1 ¬ = V1, can be handled by applying the
Boolean complement operation on the corresponding bitmap.

Consider the example in Figure 18.16. To find employees with Sex = F and 
Zipcode = 30022, we intersect the bitmaps “01011001” and “01010010” yielding
Row_ids 1 and 3. Employees who do not live in Zipcode = 94040 are obtained by
complementing the bitvector “10000001” and yields Row_ids 1 through 6. In gen-
eral, if we assume uniform distribution of values for a given column, and if one col-
umn has 5 distinct values and another has 10 distinct values, the join condition on
these two can be considered to have a selectivity of 1/50 (=1/5 * 1/10). Hence, only
about 2 percent of the records would actually have to be retrieved. If a column has
only a few values, like the Sex column in Figure 18.16, retrieval of the Sex = M con-
dition on average would retrieve 50 percent of the rows; in such cases, it is better to
do a complete scan rather than use bitmap indexing.

In general, bitmap indexes are efficient in terms of the storage space that they need.
If we consider a file of 1 million rows (records) with record size of 100 bytes per row,
each bitmap index would take up only one bit per row and hence would use 1 mil-
lion bits or 125 Kbytes. Suppose this relation is for 1 million residents of a state, and
they are spread over 200 ZIP Codes; the 200 bitmaps over Zipcodes contribute 200
bits (or 25 bytes) worth of space per row; hence, the 200 bitmaps occupy only 25
percent as much space as the data file. They allow an exact retrieval of all residents
who live in a given ZIP Code by yielding their Row_ids.



666 Chapter 18 Indexing Structures for Files

When records are deleted, renumbering rows and shifting bits in bitmaps becomes
expensive. Another bitmap, called the existence bitmap, can be used to avoid this
expense. This bitmap has a 0 bit for the rows that have been deleted but are still
present and a 1 bit for rows that actually exist. Whenever a row is inserted in the
relation, an entry must be made in all the bitmaps of all the columns that have a
bitmap index; rows typically are appended to the relation or may replace deleted
rows. This process represents an indexing overhead.

Large bitvectors are handled by treating them as a series of 32-bit or 64-bit vectors,
and corresponding AND, OR, and NOT operators are used from the instruction set
to deal with 32- or 64-bit input vectors in a single instruction. This makes bitvector
operations computationally very efficient.

Bitmaps for B+-Tree Leaf Nodes. Bitmaps can be used on the leaf nodes of
B+-tree indexes as well as to point to the set of records that contain each specific
value of the indexed field in the leaf node. When the B+-tree is built on a nonkey
search field, the leaf record must contain a list of record pointers alongside each
value of the indexed attribute. For values that occur very frequently, that is, in a
large percentage of the relation, a bitmap index may be stored instead of the point-
ers. As an example, for a relation with n rows, suppose a value occurs in 10 percent
of the file records. A bitvector would have n bits, having the “1” bit for those Row_ids
that contain that search value, which is n/8 or 0.125n bytes in size. If the record
pointer takes up 4 bytes (32 bits), then the n/10 record pointers would take up 
4 * n/10 or 0.4n bytes. Since 0.4n is more than 3 times larger than 0.125n, it is better
to store the bitmap index rather than the record pointers. Hence for search values
that occur more frequently than a certain ratio (in this case that would be 1/32), it is
beneficial to use bitmaps as a compressed storage mechanism for representing the
record pointers in B+-trees that index a nonkey field.

18.5.3 Function-Based Indexing
In this section we discuss a new type of indexing, called function-based indexing,
that has been introduced in the Oracle relational DBMS as well as in some other
commercial products.13

The idea behind function-based indexing is to create an index such that the value
that results from applying some function on a field or a collection of fields becomes
the key to the index. The following examples show how to create and use function-
based indexes.

Example 1. The following statement creates a function-based index on the
EMPLOYEE table based on an uppercase representation of the Lname column, which
can be entered in many ways but is always queried by its uppercase representation.

CREATE INDEX upper_ix ON Employee (UPPER(Lname));

13Rafi Ahmed contributed most of this section.
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This statement will create an index based on the function UPPER(Lname), which
returns the last name in uppercase letters; for example, UPPER('Smith') will
return ‘SMITH’.

Function-based indexes ensure that Oracle Database system will use the index
rather than perform a full table scan, even when a function is used in the search
predicate of a query. For example, the following query will use the index:

SELECT First_name, Lname
FROM Employee
WHERE UPPER(Lname)= "SMITH".

Without the function-based index, an Oracle Database might perform a full table
scan, since a B+-tree index is searched only by using the column value directly; the
use of any function on a column prevents such an index from being used.

Example 2. In this example, the EMPLOYEE table is supposed to contain two
fields—salary and commission_pct (commission percentage)—and an index is being
created on the sum of salary and commission based on the commission_pct.

CREATE INDEX income_ix
ON Employee(Salary + (Salary*Commission_pct));

The following query uses the income_ix index even though the fields salary and
commission_pct are occurring in the reverse order in the query when compared to
the index definition.

SELECT First_name, Lname
FROM Employee
WHERE ((Salary*Commission_pct) + Salary ) > 15000;

Example 3. This is a more advanced example of using function-based indexing to
define conditional uniqueness. The following statement creates a unique function-
based index on the ORDERS table that prevents a customer from taking advantage of
a promotion id (“blowout sale”) more than once. It creates a composite index on the
Customer_id and Promotion_id fields together, and it allows only one entry in the index
for a given Customer_id with the Promotion_id of “2” by declaring it as a unique index.

CREATE UNIQUE INDEX promo_ix ON Orders
(CASE WHEN Promotion_id = 2 THEN Customer_id ELSE NULL END,
CASE WHEN Promotion_id = 2 THEN Promotion_id ELSE NULL END);

Note that by using the CASE statement, the objective is to remove from the index any
rows where Promotion_id is not equal to 2. Oracle Database does not store in the B+-
tree index any rows where all the keys are NULL. Therefore, in this example, we map
both Customer_id and Promotion_id to NULL unless Promotion_id is equal to 2. The
result is that the index constraint is violated only if Promotion_id is equal to 2, for two
(attempted insertions of) rows with the same Customer_id value.
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18.6 Some General Issues 
Concerning Indexing

18.6.1 Logical versus Physical Indexes
In the earlier discussion, we have assumed that the index entries <K, Pr> (or <K,
P>) always include a physical pointer Pr (or P) that specifies the physical record
address on disk as a block number and offset. This is sometimes called a physical
index, and it has the disadvantage that the pointer must be changed if the record is
moved to another disk location. For example, suppose that a primary file organiza-
tion is based on linear hashing or extendible hashing; then, each time a bucket is
split, some records are allocated to new buckets and hence have new physical
addresses. If there was a secondary index on the file, the pointers to those records
would have to be found and updated, which is a difficult task.

To remedy this situation, we can use a structure called a logical index, whose index
entries are of the form <K, Kp>. Each entry has one value K for the secondary index-
ing field matched with the value Kp of the field used for the primary file organiza-
tion. By searching the secondary index on the value of K, a program can locate the
corresponding value of Kp and use this to access the record through the primary file
organization. Logical indexes thus introduce an additional level of indirection
between the access structure and the data. They are used when physical record
addresses are expected to change frequently. The cost of this indirection is the extra
search based on the primary file organization.

18.6.2 Discussion
In many systems, an index is not an integral part of the data file but can be created
and discarded dynamically. That is why it is often called an access structure.
Whenever we expect to access a file frequently based on some search condition
involving a particular field, we can request the DBMS to create an index on that
field. Usually, a secondary index is created to avoid physical ordering of the records
in the data file on disk.

The main advantage of secondary indexes is that—theoretically, at least—they can
be created in conjunction with virtually any primary record organization. Hence, a
secondary index could be used to complement other primary access methods such
as ordering or hashing, or it could even be used with mixed files. To create a B+-tree
secondary index on some field of a file, we must go through all records in the file to
create the entries at the leaf level of the tree. These entries are then sorted and filled
according to the specified fill factor; simultaneously, the other index levels are cre-
ated. It is more expensive and much harder to create primary indexes and clustering
indexes dynamically, because the records of the data file must be physically sorted
on disk in order of the indexing field. However, some systems allow users to create
these indexes dynamically on their files by sorting the file during index creation.

It is common to use an index to enforce a key constraint on an attribute. While
searching the index to insert a new record, it is straightforward to check at the same



18.6 Some General Issues Concerning Indexing 669

time whether another record in the file—and hence in the index tree—has the same
key attribute value as the new record. If so, the insertion can be rejected.

If an index is created on a nonkey field, duplicates occur; handling of these dupli-
cates is an issue the DBMS product vendors have to deal with and affects data stor-
age as well as index creation and management. Data records for the duplicate key
may be contained in the same block or may span multiple blocks where many dupli-
cates are possible. Some systems add a row id to the record so that records with
duplicate keys have their own unique identifiers. In such cases, the B+-tree index
may regard a <key, Row_id> combination as the de facto key for the index, turning
the index into a unique index with no duplicates. The deletion of a key K from such
an index would involve deleting all occurrences of that key K—hence the deletion
algorithm has to account for this.

In actual DBMS products, deletion from B+-tree indexes is also handled in various
ways to improve performance and response times. Deleted records may be marked
as deleted and the corresponding index entries may also not be removed until a
garbage collection process reclaims the space in the data file; the index is rebuilt
online after garbage collection.

A file that has a secondary index on every one of its fields is often called a fully
inverted file. Because all indexes are secondary, new records are inserted at the end
of the file; therefore, the data file itself is an unordered (heap) file. The indexes are
usually implemented as B+-trees, so they are updated dynamically to reflect inser-
tion or deletion of records. Some commercial DBMSs, such as Software AG’s
Adabas, use this method extensively.

We referred to the popular IBM file organization called ISAM in Section 18.2.
Another IBM method, the virtual storage access method (VSAM), is somewhat sim-
ilar to the B+–tree access structure and is still being used in many commercial systems.

18.6.3 Column-Based Storage of Relations
There has been a recent trend to consider a column-based storage of relations as an
alternative to the traditional way of storing relations row by row. Commercial rela-
tional DBMSs have offered B+-tree indexing on primary as well as secondary keys as
an efficient mechanism to support access to data by various search criteria and the
ability to write a row or a set of rows to disk at a time to produce write-optimized
systems. For data warehouses (to be discussed in Chapter 29), which are read-only
databases, the column-based storage offers particular advantages for read-only
queries. Typically, the column-store RDBMSs consider storing each column of data
individually and afford performance advantages in the following areas:

■ Vertically partitioning the table column by column, so that a two-column
table can be constructed for every attribute and thus only the needed
columns can be accessed

■ Use of column-wise indexes (similar to the bitmap indexes discussed in
Section 18.5.2) and join indexes on multiple tables to answer queries with-
out having to access the data tables
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■ Use of materialized views (see Chapter 5) to support queries on multiple
columns

Column-wise storage of data affords additional freedom in the creation of indexes,
such as the bitmap indexes discussed earlier. The same column may be present in
multiple projections of a table and indexes may be created on each projection. To
store the values in the same column, strategies for data compression, null-value sup-
pression, dictionary encoding techniques (where distinct values in the column are
assigned shorter codes), and run-length encoding techniques have been devised.
MonetDB/X100, C-Store, and Vertica are examples of such systems. Further discus-
sion on column-store DBMSs can be found in the references mentioned in this
chapter’s Selected Bibliography.

18.7 Summary
In this chapter we presented file organizations that involve additional access struc-
tures, called indexes, to improve the efficiency of retrieval of records from a data file.
These access structures may be used in conjunction with the primary file organiza-
tions discussed in Chapter 17, which are used to organize the file records themselves
on disk.

Three types of ordered single-level indexes were introduced: primary, clustering, and
secondary. Each index is specified on a field of the file. Primary and clustering
indexes are constructed on the physical ordering field of a file, whereas secondary
indexes are specified on nonordering fields as additional access structures to improve
performance of queries and transactions. The field for a primary index must also be
a key of the file, whereas it is a nonkey field for a clustering index. A single-level index
is an ordered file and is searched using a binary search. We showed how multilevel
indexes can be constructed to improve the efficiency of searching an index.

Next we showed how multilevel indexes can be implemented as B-trees and B+-
trees, which are dynamic structures that allow an index to expand and shrink
dynamically. The nodes (blocks) of these index structures are kept between half full
and completely full by the insertion and deletion algorithms. Nodes eventually sta-
bilize at an average occupancy of 69 percent full, allowing space for insertions with-
out requiring reorganization of the index for the majority of insertions. B+-trees
can generally hold more entries in their internal nodes than can B-trees, so they may
have fewer levels or hold more entries than does a corresponding B-tree.

We gave an overview of multiple key access methods, and showed how an index can
be constructed based on hash data structures. We discussed the hash index in some
detail—it is a secondary structure to access the file by using hashing on a search key
other than that used for the primary organization. Bitmap indexing is another
important type of indexing used for querying by multiple keys and is particularly
applicable on fields with a small number of unique values. Bitmaps can also be used
at the leaf nodes of B+ tree indexes as well. We also discussed function-based index-
ing, which is being provided by relational vendors to allow special indexes on a
function of one or more attributes.
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We introduced the concept of a logical index and compared it with the physical
indexes we described before. They allow an additional level of indirection in index-
ing in order to permit greater freedom for movement of actual record locations on
disk. We also reviewed some general issues related to indexing, and commented on
column-based storage of relations, which has particular advantages for read-only
databases. Finally, we discussed how combinations of the above organizations can
be used. For example, secondary indexes are often used with mixed files, as well as
with unordered and ordered files.

Review Questions
18.1. Define the following terms: indexing field, primary key field, clustering field,

secondary key field, block anchor, dense index, and nondense (sparse) index.

18.2. What are the differences among primary, secondary, and clustering indexes?
How do these differences affect the ways in which these indexes are imple-
mented? Which of the indexes are dense, and which are not?

18.3. Why can we have at most one primary or clustering index on a file, but sev-
eral secondary indexes?

18.4. How does multilevel indexing improve the efficiency of searching an index
file?

18.5. What is the order p of a B-tree? Describe the structure of B-tree nodes.

18.6. What is the order p of a B+-tree? Describe the structure of both internal and
leaf nodes of a B+-tree.

18.7. How does a B-tree differ from a B+-tree? Why is a B+-tree usually preferred
as an access structure to a data file?

18.8. Explain what alternative choices exist for accessing a file based on multiple
search keys.

18.9. What is partitioned hashing? How does it work? What are its limitations?

18.10. What is a grid file? What are its advantages and disadvantages?

18.11. Show an example of constructing a grid array on two attributes on some file.

18.12. What is a fully inverted file? What is an indexed sequential file?

18.13. How can hashing be used to construct an index?

18.14. What is bitmap indexing? Create a relation with two columns and sixteen
tuples and show an example of a bitmap index on one or both.

18.15. What is the concept of function-based indexing? What additional purpose
does it serve?

18.16. What is the difference between a logical index and a physical index?

18.17. What is column-based storage of a relational database?
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Exercises
18.18. Consider a disk with block size B = 512 bytes. A block pointer is P = 6 bytes

long, and a record pointer is PR = 7 bytes long. A file has r = 30,000
EMPLOYEE records of fixed length. Each record has the following fields: Name
(30 bytes), Ssn (9 bytes), Department_code (9 bytes), Address (40 bytes),
Phone (10 bytes), Birth_date (8 bytes), Sex (1 byte), Job_code (4 bytes), and
Salary (4 bytes, real number). An additional byte is used as a deletion marker.

a. Calculate the record size R in bytes.

b. Calculate the blocking factor bfr and the number of file blocks b, assum-
ing an unspanned organization.

c. Suppose that the file is ordered by the key field Ssn and we want to con-
struct a primary index on Ssn. Calculate (i) the index blocking factor bfri
(which is also the index fan-out fo); (ii) the number of first-level index
entries and the number of first-level index blocks; (iii) the number of lev-
els needed if we make it into a multilevel index; (iv) the total number of
blocks required by the multilevel index; and (v) the number of block
accesses needed to search for and retrieve a record from the file—given its
Ssn value—using the primary index.

d. Suppose that the file is not ordered by the key field Ssn and we want to
construct a secondary index on Ssn. Repeat the previous exercise (part c)
for the secondary index and compare with the primary index.

e. Suppose that the file is not ordered by the nonkey field Department_code
and we want to construct a secondary index on Department_code, using
option 3 of Section 18.1.3, with an extra level of indirection that stores
record pointers. Assume there are 1,000 distinct values of
Department_code and that the EMPLOYEE records are evenly distributed
among these values. Calculate (i) the index blocking factor bfri (which is
also the index fan-out fo); (ii) the number of blocks needed by the level of
indirection that stores record pointers; (iii) the number of first-level
index entries and the number of first-level index blocks; (iv) the number
of levels needed if we make it into a multilevel index; (v) the total number
of blocks required by the multilevel index and the blocks used in the extra
level of indirection; and (vi) the approximate number of block accesses
needed to search for and retrieve all records in the file that have a specific
Department_code value, using the index.

f. Suppose that the file is ordered by the nonkey field Department_code and
we want to construct a clustering index on Department_code that uses
block anchors (every new value of Department_code starts at the beginning
of a new block). Assume there are 1,000 distinct values of
Department_code and that the EMPLOYEE records are evenly distributed
among these values. Calculate (i) the index blocking factor bfri (which is
also the index fan-out fo); (ii) the number of first-level index entries and
the number of first-level index blocks; (iii) the number of levels needed if
we make it into a multilevel index; (iv) the total number of blocks
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required by the multilevel index; and (v) the number of block accesses
needed to search for and retrieve all records in the file that have a specific
Department_code value, using the clustering index (assume that multiple
blocks in a cluster are contiguous).

g. Suppose that the file is not ordered by the key field Ssn and we want to
construct a B+-tree access structure (index) on Ssn. Calculate (i) the
orders p and pleaf of the B+-tree; (ii) the number of leaf-level blocks
needed if blocks are approximately 69 percent full (rounded up for con-
venience); (iii) the number of levels needed if internal nodes are also 69
percent full (rounded up for convenience); (iv) the total number of blocks
required by the B+-tree; and (v) the number of block accesses needed to
search for and retrieve a record from the file—given its Ssn value—using
the B+-tree.

h. Repeat part g, but for a B-tree rather than for a B+-tree. Compare your
results for the B-tree and for the B+-tree.

18.19. A PARTS file with Part# as the key field includes records with the following
Part# values: 23, 65, 37, 60, 46, 92, 48, 71, 56, 59, 18, 21, 10, 74, 78, 15, 16, 20,
24, 28, 39, 43, 47, 50, 69, 75, 8, 49, 33, 38. Suppose that the search field values
are inserted in the given order in a B+-tree of order p = 4 and pleaf = 3; show
how the tree will expand and what the final tree will look like.

18.20. Repeat Exercise 18.19, but use a B-tree of order p = 4 instead of a B+-tree.

18.21. Suppose that the following search field values are deleted, in the given order,
from the B+-tree of Exercise 18.19; show how the tree will shrink and show
the final tree. The deleted values are 65, 75, 43, 18, 20, 92, 59, 37.

18.22. Repeat Exercise 18.21, but for the B-tree of Exercise 18.20.

18.23. Algorithm 18.1 outlines the procedure for searching a nondense multilevel
primary index to retrieve a file record. Adapt the algorithm for each of the
following cases:

a. A multilevel secondary index on a nonkey nonordering field of a file.
Assume that option 3 of Section 18.1.3 is used, where an extra level of
indirection stores pointers to the individual records with the corres-
ponding index field value.

b. A multilevel secondary index on a nonordering key field of a file.

c. A multilevel clustering index on a nonkey ordering field of a file.

18.24. Suppose that several secondary indexes exist on nonkey fields of a file,
implemented using option 3 of Section 18.1.3; for example, we could have
secondary indexes on the fields Department_code, Job_code, and Salary of the
EMPLOYEE file of Exercise 18.18. Describe an efficient way to search for and
retrieve records satisfying a complex selection condition on these fields, such
as (Department_code = 5 AND Job_code = 12 AND Salary = 50,000), using the
record pointers in the indirection level.
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18.25. Adapt Algorithms 18.2 and 18.3, which outline search and insertion proce-
dures for a B+-tree, to a B-tree.

18.26. It is possible to modify the B+-tree insertion algorithm to delay the case
where a new level is produced by checking for a possible redistribution of val-
ues among the leaf nodes. Figure 18.17 (next page) illustrates how this could
be done for our example in Figure 18.12; rather than splitting the leftmost
leaf node when 12 is inserted, we do a left redistribution by moving 7 to the
leaf node to its left (if there is space in this node). Figure 18.17 shows how
the tree would look when redistribution is considered. It is also possible to
consider right redistribution. Try to modify the B+-tree insertion algorithm
to take redistribution into account.

18.27. Outline an algorithm for deletion from a B+-tree.

18.28. Repeat Exercise 18.27 for a B-tree.
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Algorithms for Query 
Processing and Optimization

In this chapter we discuss the techniques used inter-
nally by a DBMS to process, optimize, and execute

high-level queries. A query expressed in a high-level query language such as SQL
must first be scanned, parsed, and validated.1 The scanner identifies the query
tokens—such as SQL keywords, attribute names, and relation names—that appear
in the text of the query, whereas the parser checks the query syntax to determine
whether it is formulated according to the syntax rules (rules of grammar) of the
query language. The query must also be validated by checking that all attribute and
relation names are valid and semantically meaningful names in the schema of the
particular database being queried. An internal representation of the query is then
created, usually as a tree data structure called a query tree. It is also possible to rep-
resent the query using a graph data structure called a query graph. The DBMS must
then devise an execution strategy or query plan for retrieving the results of the
query from the database files. A query typically has many possible execution strate-
gies, and the process of choosing a suitable one for processing a query is known as
query optimization.

Figure 19.1 shows the different steps of processing a high-level query. The query
optimizer module has the task of producing a good execution plan, and the code
generator generates the code to execute that plan. The runtime database processor
has the task of running (executing) the query code, whether in compiled or inter-
preted mode, to produce the query result. If a runtime error results, an error mes-
sage is generated by the runtime database processor.

19chapter 19

1We will not discuss the parsing and syntax-checking phase of query processing here; this material is
discussed in compiler textbooks.
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The term optimization is actually a misnomer because in some cases the chosen exe-
cution plan is not the optimal (or absolute best) strategy—it is just a reasonably effi-
cient strategy for executing the query. Finding the optimal strategy is usually too
time-consuming—except for the simplest of queries. In addition, trying to find the
optimal query execution strategy may require detailed information on how the files
are implemented and even on the contents of the files—information that may not
be fully available in the DBMS catalog. Hence, planning of a good execution strategy
may be a more accurate description than query optimization.

For lower-level navigational database languages in legacy systems—such as the net-
work DML or the hierarchical DL/1 (see Section 2.6)—the programmer must
choose the query execution strategy while writing a database program. If a DBMS
provides only a navigational language, there is limited need or opportunity for exten-
sive query optimization by the DBMS; instead, the programmer is given the capabil-
ity to choose the query execution strategy. On the other hand, a high-level query
language—such as SQL for relational DBMSs (RDBMSs) or OQL (see Chapter 11)
for object DBMSs (ODBMSs)—is more declarative in nature because it specifies
what the intended results of the query are, rather than identifying the details of how
the result should be obtained. Query optimization is thus necessary for queries that
are specified in a high-level query language.

We will concentrate on describing query optimization in the context of an RDBMS
because many of the techniques we describe have also been adapted for other types

Query in a high-level language

Scanning, parsing, and validating

Immediate form of query

Query optimizer

Execution plan

Query code generator

Code to execute the query

Runtime database processor

Code can be:

Executed directly (interpreted mode)

Stored and executed later whenever
needed (compiled mode)

Result of query

Figure 19.1
Typical steps when 
processing a high-level
query.
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2There are some query optimization problems and techniques that are pertinent only to ODBMSs.
However, we do not discuss them here because we give only an introduction to query optimization.

of database management systems, such as ODBMSs.2 A relational DBMS must sys-
tematically evaluate alternative query execution strategies and choose a reasonably
efficient or near-optimal strategy. Each DBMS typically has a number of general
database access algorithms that implement relational algebra operations such as
SELECT or JOIN (see Chapter 6) or combinations of these operations. Only execu-
tion strategies that can be implemented by the DBMS access algorithms and that
apply to the particular query, as well as to the particular physical database design, can
be considered by the query optimization module.

This chapter starts with a general discussion of how SQL queries are typically trans-
lated into relational algebra queries and then optimized in Section 19.1. Then we
discuss algorithms for implementing relational algebra operations in Sections 19.2
through 19.6. Following this, we give an overview of query optimization strategies.
There are two main techniques that are employed during query optimization. The
first technique is based on heuristic rules for ordering the operations in a query
execution strategy. A heuristic is a rule that works well in most cases but is not guar-
anteed to work well in every case. The rules typically reorder the operations in a
query tree. The second technique involves systematically estimating the cost of dif-
ferent execution strategies and choosing the execution plan with the lowest cost esti-
mate. These techniques are usually combined in a query optimizer. We discuss
heuristic optimization in Section 19.7 and cost estimation in Section 19.8. Then we
provide a brief overview of the factors considered during query optimization in the
Oracle commercial RDBMS in Section 19.9. Section 19.10 introduces the topic of
semantic query optimization, in which known constraints are used as an aid to
devising efficient query execution strategies.

The topics covered in this chapter require that the reader be familiar with the mate-
rial presented in several earlier chapters. In particular, the chapters on SQL
(Chapters 4 and 5), relational algebra (Chapter 6), and file structures and indexing
(Chapters 17 and 18) are a prerequisite to this chapter. Also, it is important to note
that the topic of query processing and optimization is vast, and we can only give an
introduction to the basic principles and techniques in this chapter.

19.1 Translating SQL Queries into Relational
Algebra

In practice, SQL is the query language that is used in most commercial RDBMSs. An
SQL query is first translated into an equivalent extended relational algebra expres-
sion—represented as a query tree data structure—that is then optimized. Typically,
SQL queries are decomposed into query blocks, which form the basic units that can
be translated into the algebraic operators and optimized. A query block contains a
single SELECT-FROM-WHERE expression, as well as GROUP BY and HAVING clauses
if these are part of the block. Hence, nested queries within a query are identified as
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separate query blocks. Because SQL includes aggregate operators—such as MAX,
MIN, SUM, and COUNT—these operators must also be included in the extended
algebra, as we discussed in Section 6.4.

Consider the following SQL query on the EMPLOYEE relation in Figure 3.5:

SELECT Lname, Fname
FROM EMPLOYEE
WHERE Salary > ( SELECT MAX (Salary)

FROM EMPLOYEE
WHERE Dno=5 );

This query retrieves the names of employees (from any department in the com-
pany) who earn a salary that is greater than the highest salary in department 5. The
query includes a nested subquery and hence would be decomposed into two blocks.
The inner block is:

( SELECT MAX (Salary)
FROM EMPLOYEE
WHERE Dno=5 )

This retrieves the highest salary in department 5. The outer query block is:

SELECT Lname, Fname
FROM EMPLOYEE
WHERE Salary > c

where c represents the result returned from the inner block. The inner block could
be translated into the following extended relational algebra expression:

ℑMAX Salary(σDno=5(EMPLOYEE))

and the outer block into the expression:

πLname,Fname(σSalary>c(EMPLOYEE))

The query optimizer would then choose an execution plan for each query block.
Notice that in the above example, the inner block needs to be evaluated only once to
produce the maximum salary of employees in department 5, which is then used—as
the constant c—by the outer block. We called this a nested query (without correlation
with the outer query) in Section 5.1.2. It is much harder to optimize the more com-
plex correlated nested queries (see Section 5.1.3), where a tuple variable from the
outer query block appears in the WHERE-clause of the inner query block.

19.2 Algorithms for External Sorting
Sorting is one of the primary algorithms used in query processing. For example,
whenever an SQL query specifies an ORDER BY-clause, the query result must be
sorted. Sorting is also a key component in sort-merge algorithms used for JOIN and
other operations (such as UNION and INTERSECTION), and in duplicate elimination
algorithms for the PROJECT operation (when an SQL query specifies the DISTINCT
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option in the SELECT clause). We will discuss one of these algorithms in this sec-
tion. Note that sorting of a particular file may be avoided if an appropriate index—
such as a primary or clustering index (see Chapter 18)—exists on the desired file
attribute to allow ordered access to the records of the file.

External sorting refers to sorting algorithms that are suitable for large files of
records stored on disk that do not fit entirely in main memory, such as most data-
base files.3 The typical external sorting algorithm uses a sort-merge strategy, which
starts by sorting small subfiles—called runs—of the main file and then merges the
sorted runs, creating larger sorted subfiles that are merged in turn. The sort-merge
algorithm, like other database algorithms, requires buffer space in main memory,
where the actual sorting and merging of the runs is performed. The basic algorithm,
outlined in Figure 19.2, consists of two phases: the sorting phase and the merging
phase. The buffer space in main memory is part of the DBMS cache—an area in the
computer’s main memory that is controlled by the DBMS. The buffer space is
divided into individual buffers, where each buffer is the same size in bytes as the size
of one disk block. Thus, one buffer can hold the contents of exactly one disk block.

In the sorting phase, runs (portions or pieces) of the file that can fit in the available
buffer space are read into main memory, sorted using an internal sorting algorithm,
and written back to disk as temporary sorted subfiles (or runs). The size of each run
and the number of initial runs (nR) are dictated by the number of file blocks (b)
and the available buffer space (nB). For example, if the number of available main
memory buffers nB = 5 disk blocks and the size of the file b = 1024 disk blocks, then
nR= ⎡(b/nB)⎤ or 205 initial runs each of size 5 blocks (except the last run which will
have only 4 blocks). Hence, after the sorting phase, 205 sorted runs (or 205 sorted
subfiles of the original file) are stored as temporary subfiles on disk.

In the merging phase, the sorted runs are merged during one or more merge
passes. Each merge pass can have one or more merge steps. The degree of merging
(dM) is the number of sorted subfiles that can be merged in each merge step. During
each merge step, one buffer block is needed to hold one disk block from each of the
sorted subfiles being merged, and one additional buffer is needed for containing
one disk block of the merge result, which will produce a larger sorted file that is the
result of merging several smaller sorted subfiles. Hence, dM is the smaller of (nB − 1)
and nR, and the number of merge passes is ⎡(logdM(nR))⎤. In our example where nB =
5, dM = 4 (four-way merging), so the 205 initial sorted runs would be merged 4 at a
time in each step into 52 larger sorted subfiles at the end of the first merge pass.
These 52 sorted files are then merged 4 at a time into 13 sorted files, which are then
merged into 4 sorted files, and then finally into 1 fully sorted file, which means that
four passes are needed.

3Internal sorting algorithms are suitable for sorting data structures, such as tables and lists, that can fit
entirely in main memory. These algorithms are described in detail in data structures and algorithms
books, and include techniques such as quick sort, heap sort, bubble sort, and many others. We do not
discuss these here.
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set i ← 1;
j ← b; {size of the file in blocks}
k ← nB; {size of buffer in blocks}
m ← ⎡( j/k)⎤;

{Sorting Phase}
while (i ≤ m)
do {

read next k blocks of the file into the buffer or if there are less than k blocks
remaining, then read in the remaining blocks;

sort the records in the buffer and write as a temporary subfile;
i ← i + 1;

}

{Merging Phase: merge subfiles until only 1 remains}
set i ← 1;

p ← ⎡logk–1m⎤ {p is the number of passes for the merging phase}
j ← m;

while (i ≤ p)
do {

n ← 1;
q ← ( j/(k–1)⎤ ; {number of subfiles to write in this pass}
while (n ≤ q)
do {

read next k–1 subfiles or remaining subfiles (from previous pass)
one block at a time;

merge and write as new subfile one block at a time;
n ← n + 1;

}
j ← q;
i ← i + 1;

}

Figure 19.2
Outline of the sort-merge algorithm for external sorting.

The performance of the sort-merge algorithm can be measured in the number of
disk block reads and writes (between the disk and main memory) before the sorting
of the whole file is completed. The following formula approximates this cost:

(2 * b) + (2 * b * (logdM nR))

The first term (2 * b) represents the number of block accesses for the sorting phase,
since each file block is accessed twice: once for reading into a main memory buffer
and once for writing the sorted records back to disk into one of the sorted subfiles.
The second term represents the number of block accesses for the merging phase.
During each merge pass, a number of disk blocks approximately equal to the origi-
nal file blocks b is read and written. Since the number of merge passes is (logdM nR),
we get the total merge cost of (2 * b * (logdM nR)).
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The minimum number of main memory buffers needed is nB = 3, which gives a dM
of 2 and an nR of ⎡(b/3)⎤. The minimum dM of 2 gives the worst-case performance
of the algorithm, which is:

(2 * b) + (2 * (b * (log2 nR))).

The following sections discuss the various algorithms for the operations of the rela-
tional algebra (see Chapter 6).

19.3 Algorithms for SELECT and JOIN
Operations

19.3.1 Implementing the SELECT Operation
There are many algorithms for executing a SELECT operation, which is basically a
search operation to locate the records in a disk file that satisfy a certain condition.
Some of the search algorithms depend on the file having specific access paths, and
they may apply only to certain types of selection conditions. We discuss some of the
algorithms for implementing SELECT in this section. We will use the following
operations, specified on the relational database in Figure 3.5, to illustrate our dis-
cussion:

OP1:  σSsn = ‘123456789’ (EMPLOYEE)

OP2:  σDnumber > 5 (DEPARTMENT)

OP3:  σDno = 5 (EMPLOYEE)

OP4:  σDno = 5 AND Salary > 30000 AND Sex = ‘F’ (EMPLOYEE)

OP5:  σEssn=‘123456789’ AND Pno =10(WORKS_ON)

Search Methods for Simple Selection. A number of search algorithms are pos-
sible for selecting records from a file. These are also known as file scans, because
they scan the records of a file to search for and retrieve records that satisfy a selec-
tion condition.4 If the search algorithm involves the use of an index, the index
search is called an index scan. The following search methods (S1 through S6) are
examples of some of the search algorithms that can be used to implement a select
operation:

■ S1—Linear search (brute force algorithm). Retrieve every record in the file,
and test whether its attribute values satisfy the selection condition. Since the
records are grouped into disk blocks, each disk block is read into a main
memory buffer, and then a search through the records within the disk block
is conducted in main memory.

4A selection operation is sometimes called a filter, since it filters out the records in the file that do not

satisfy the selection condition.
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■ S2—Binary search. If the selection condition involves an equality compari-
son on a key attribute on which the file is ordered, binary search—which is
more efficient than linear search—can be used. An example is OP1 if Ssn is
the ordering attribute for the EMPLOYEE file.5

■ S3a—Using a primary index. If the selection condition involves an equality
comparison on a key attribute with a primary index—for example, Ssn =
‘123456789’ in OP1—use the primary index to retrieve the record. Note that
this condition retrieves a single record (at most).

■ S3b—Using a hash key. If the selection condition involves an equality com-
parison on a key attribute with a hash key—for example, Ssn = ‘123456789’
in OP1—use the hash key to retrieve the record. Note that this condition
retrieves a single record (at most).

■ S4—Using a primary index to retrieve multiple records. If the comparison
condition is >, >=, <, or <= on a key field with a primary index—for exam-
ple, Dnumber > 5 in OP2—use the index to find the record satisfying the cor-
responding equality condition (Dnumber = 5), then retrieve all subsequent
records in the (ordered) file. For the condition Dnumber < 5, retrieve all the
preceding records.

■ S5—Using a clustering index to retrieve multiple records. If the selection
condition involves an equality comparison on a nonkey attribute with a
clustering index—for example, Dno = 5 in OP3—use the index to retrieve all
the records satisfying the condition.

■ S6—Using a secondary (B+-tree) index on an equality comparison. This
search method can be used to retrieve a single record if the indexing field is a
key (has unique values) or to retrieve multiple records if the indexing field is
not a key. This can also be used for comparisons involving >, >=, <, or <=.

In Section 19.8, we discuss how to develop formulas that estimate the access cost of
these search methods in terms of the number of block accesses and access time.
Method S1 (linear search) applies to any file, but all the other methods depend on
having the appropriate access path on the attribute used in the selection condition.
Method S2 (binary search) requires the file to be sorted on the search attribute. The
methods that use an index (S3a, S4, S5, and S6) are generally referred to as index
searches, and they require the appropriate index to exist on the search attribute.
Methods S4 and S6 can be used to retrieve records in a certain range—for example,
30000 <= Salary <= 35000. Queries involving such conditions are called range
queries.

Search Methods for Complex Selection. If a condition of a SELECT operation
is a conjunctive condition—that is, if it is made up of several simple conditions

5Generally, binary search is not used in database searches because ordered files are not used unless
they also have a corresponding primary index.
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connected with the AND logical connective such as OP4 above—the DBMS can use
the following additional methods to implement the operation:

■ S7—Conjunctive selection using an individual index. If an attribute
involved in any single simple condition in the conjunctive select condition
has an access path that permits the use of one of the methods S2 to S6, use
that condition to retrieve the records and then check whether each retrieved
record satisfies the remaining simple conditions in the conjunctive select 
condition.

■ S8—Conjunctive selection using a composite index. If two or more attrib-
utes are involved in equality conditions in the conjunctive select condition
and a composite index (or hash structure) exists on the combined fields—
for example, if an index has been created on the composite key (Essn, Pno) of
the WORKS_ON file for OP5—we can use the index directly.

■ S9—Conjunctive selection by intersection of record pointers.6 If second-
ary indexes (or other access paths) are available on more than one of the
fields involved in simple conditions in the conjunctive select condition, and
if the indexes include record pointers (rather than block pointers), then each
index can be used to retrieve the set of record pointers that satisfy the indi-
vidual condition. The intersection of these sets of record pointers gives the
record pointers that satisfy the conjunctive select condition, which are then
used to retrieve those records directly. If only some of the conditions have
secondary indexes, each retrieved record is further tested to determine
whether it satisfies the remaining conditions.7 In general, method S9
assumes that each of the indexes is on a nonkey field of the file, because if one
of the conditions is an equality condition on a key field, only one record will
satisfy the whole condition.

Whenever a single condition specifies the selection—such as OP1, OP2, or OP3—
the DBMS can only check whether or not an access path exists on the attribute
involved in that condition. If an access path (such as index or hash key or sorted file)
exists, the method corresponding to that access path is used; otherwise, the brute
force, linear search approach of method S1 can be used. Query optimization for a
SELECT operation is needed mostly for conjunctive select conditions whenever
more than one of the attributes involved in the conditions have an access path. The
optimizer should choose the access path that retrieves the fewest records in the most
efficient way by estimating the different costs (see Section 19.8) and choosing the
method with the least estimated cost.

Selectivity of a Condition. When the optimizer is choosing between multiple
simple conditions in a conjunctive select condition, it typically considers the

6A record pointer uniquely identifies a record and provides the address of the record on disk; hence, it is
also called the record identifier or record id.
7The technique can have many variations—for example, if the indexes are logical indexes that store pri-
mary key values instead of record pointers.
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selectivity of each condition. The selectivity (sl) is defined as the ratio of the num-
ber of records (tuples) that satisfy the condition to the total number of records
(tuples) in the file (relation), and thus is a number between zero and one. Zero selec-
tivity means none of the records in the file satisfies the selection condition, and a
selectivity of one means that all the records in the file satisfy the condition. In gen-
eral, the selectivity will not be either of these two extremes, but will be a fraction
that estimates the percentage of file records that will be retrieved.

Although exact selectivities of all conditions may not be available, estimates of
selectivities are often kept in the DBMS catalog and are used by the optimizer. For
example, for an equality condition on a key attribute of relation r(R), s = 1/|r(R)|,
where |r(R)| is the number of tuples in relation r(R). For an equality condition on a
nonkey attribute with i distinct values, s can be estimated by (|r(R)|/i)/|r(R)| or 1/i,
assuming that the records are evenly or uniformly distributed among the distinct
values.8 Under this assumption, |r(R)|/i records will satisfy an equality condition on
this attribute. In general, the number of records satisfying a selection condition with
selectivity sl is estimated to be |r(R)| * sl. The smaller this estimate is, the higher the
desirability of using that condition first to retrieve records. In certain cases, the
actual distribution of records among the various distinct values of the attribute is
kept by the DBMS in the form of a histogram, in order to get more accurate esti-
mates of the number of records that satisfy a particular condition.

Disjunctive Selection Conditions. Compared to a conjunctive selection condi-
tion, a disjunctive condition (where simple conditions are connected by the OR
logical connective rather than by AND) is much harder to process and optimize. For
example, consider OP4�:

OP4�: σDno=5 OR Salary > 30000 OR Sex=‘F’ (EMPLOYEE)

With such a condition, little optimization can be done, because the records satisfy-
ing the disjunctive condition are the union of the records satisfying the individual
conditions. Hence, if any one of the conditions does not have an access path, we are
compelled to use the brute force, linear search approach. Only if an access path
exists on every simple condition in the disjunction can we optimize the selection by
retrieving the records satisfying each condition—or their record ids—and then
applying the union operation to eliminate duplicates.

A DBMS will have available many of the methods discussed above, and typically
many additional methods. The query optimizer must choose the appropriate one
for executing each SELECT operation in a query. This optimization uses formulas
that estimate the costs for each available access method, as we will discuss in Section
19.8. The optimizer chooses the access method with the lowest estimated cost.

8In more sophisticated optimizers, histograms representing the distribution of the records among the dif-
ferent attribute values can be kept in the catalog.
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19.3.2 Implementing the JOIN Operation
The JOIN operation is one of the most time-consuming operations in query pro-
cessing. Many of the join operations encountered in queries are of the EQUIJOIN
and NATURAL JOIN varieties, so we consider just these two here since we are only
giving an overview of query processing and optimization. For the remainder of this
chapter, the term join refers to an EQUIJOIN (or NATURAL JOIN).

There are many possible ways to implement a two-way join, which is a join on two
files. Joins involving more than two files are called multiway joins. The number of
possible ways to execute multiway joins grows very rapidly. In this section we dis-
cuss techniques for implementing only two-way joins. To illustrate our discussion,
we refer to the relational schema in Figure 3.5 once more—specifically, to the
EMPLOYEE, DEPARTMENT, and PROJECT relations. The algorithms we discuss next
are for a join operation of the form:

R A=B S

where A and B are the join attributes, which should be domain-compatible attrib-
utes of R and S, respectively. The methods we discuss can be extended to more gen-
eral forms of join. We illustrate four of the most common techniques for
performing such a join, using the following sample operations:

OP6:  EMPLOYEE Dno=Dnumber DEPARTMENT
OP7:  DEPARTMENT Mgr_ssn=Ssn EMPLOYEE

Methods for Implementing Joins.

■ J1—Nested-loop join (or nested-block join). This is the default (brute
force) algorithm, as it does not require any special access paths on either file
in the join. For each record t in R (outer loop), retrieve every record s from S
(inner loop) and test whether the two records satisfy the join condition 
t[A] = s[B].9

■ J2—Single-loop join (using an access structure to retrieve the matching
records). If an index (or hash key) exists for one of the two join attributes—
say, attribute B of file S—retrieve each record t in R (loop over file R), and
then use the access structure (such as an index or a hash key) to retrieve
directly all matching records s from S that satisfy s[B] = t[A].

■ J3—Sort-merge join. If the records of R and S are physically sorted (ordered)
by value of the join attributes A and B, respectively, we can implement the join
in the most efficient way possible. Both files are scanned concurrently in order
of the join attributes, matching the records that have the same values for A and
B. If the files are not sorted, they may be sorted first by using external sorting
(see Section 19.2). In this method, pairs of file blocks are copied into memory
buffers in order and the records of each file are scanned only once each for

9For disk files, it is obvious that the loops will be over disk blocks, so this technique has also been called
nested-block join.
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matching with the other file—unless both A and B are nonkey attributes, in
which case the method needs to be modified slightly. A sketch of the sort-
merge join algorithm is given in Figure 19.3(a). We use R(i) to refer to the ith
record in file R. A variation of the sort-merge join can be used when secondary
indexes exist on both join attributes. The indexes provide the ability to access
(scan) the records in order of the join attributes, but the records themselves are
physically scattered all over the file blocks, so this method may be quite ineffi-
cient, as every record access may involve accessing a different disk block.

■ J4—Partition-hash join. The records of files R and S are partitioned into
smaller files. The partitioning of each file is done using the same hashing
function h on the join attribute A of R (for partitioning file R) and B of S (for
partitioning file S). First, a single pass through the file with fewer records (say,
R) hashes its records to the various partitions of R; this is called the
partitioning phase, since the records of R are partitioned into the hash buck-
ets. In the simplest case, we assume that the smaller file can fit entirely in
main memory after it is partitioned, so that the partitioned subfiles of R are
all kept in main memory. The collection of records with the same value of
h(A) are placed in the same partition, which is a hash bucket in a hash table
in main memory. In the second phase, called the probing phase, a single pass
through the other file (S) then hashes each of its records using the same hash
function h(B) to probe the appropriate bucket, and that record is combined
with all matching records from R in that bucket. This simplified description
of partition-hash join assumes that the smaller of the two files fits entirely into
memory buckets after the first phase. We will discuss the general case of
partition-hash join that does not require this assumption below. In practice,
techniques J1 to J4 are implemented by accessing whole disk blocks of a file,
rather than individual records. Depending on the available number of buffers
in memory, the number of blocks read in from the file can be adjusted.

How Buffer Space and Choice of Outer-Loop File Affect Performance of
Nested-Loop Join. The buffer space available has an important effect on some of
the join algorithms. First, let us consider the nested-loop approach (J1). Looking
again at the operation OP6 above, assume that the number of buffers available in
main memory for implementing the join is nB = 7 blocks (buffers). Recall that we
assume that each memory buffer is the same size as one disk block. For illustration,
assume that the DEPARTMENT file consists of rD = 50 records stored in bD = 10 disk
blocks and that the EMPLOYEE file consists of rE = 6000 records stored in bE = 2000
disk blocks. It is advantageous to read as many blocks as possible at a time into
memory from the file whose records are used for the outer loop (that is, nB − 2
blocks). The algorithm can then read one block at a time for the inner-loop file and
use its records to probe (that is, search) the outer-loop blocks that are currently in
main memory for matching records. This reduces the total number of block
accesses. An extra buffer in main memory is needed to contain the resulting records
after they are joined, and the contents of this result buffer can be appended to the
result file—the disk file that will contain the join result—whenever it is filled. This
result buffer block then is reused to hold additional join result records.



(a) sort the tuples in R on attribute A; (* assume R has n tuples (records) *)
sort the tuples in S on attribute B; (* assume S has m tuples (records) *)
set i ← 1, j ← 1;
while (i ≤ n) and ( j ≤ m)
do { if R( i ) [A] > S( j ) [B]

then set j ← j + 1
elseif R( i ) [A] < S( j ) [B]

then set i ← i + 1
else  { (* R( i ) [A] = S( j ) [B], so we output a matched tuple *)

output the combined tuple <R( i ) , S( j )> to T;

(* output other tuples that match R(i), if any *)
set I ← j + 1;
while (l ≤ m) and (R( i ) [A] = S( l ) [B])
do { output the combined tuple <R( i ) , S( l )> to T;

set l ← l + 1
}

(* output other tuples that match S(j), if any *)
set k ← i + 1;
while (k ≤ n) and (R(k ) [A] = S( j ) [B])
do { output the combined tuple <R(k ) , S( j )> to T;

set k ← k + 1
}
set i ← k, j ← l

}
}

(b) create a tuple t[<attribute list>] in T� for each tuple t in R;
(* T� contains the projection results before duplicate elimination *)

if <attribute list> includes a key of R
then T ← T�

else { sort the tuples in T �;
set i ← 1, j ← 2;
while i n
do { output the tuple T�[ i ] to T;

while T�[ i ] = T �[ j ] and j ≤ n do j ← j + 1; (* eliminate duplicates *)
i ← j; j ← i + 1

}
}
(* T contains the projection result after duplicate elimination *) (continues)
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Figure 19.3
Implementing JOIN, PROJECT, UNION, INTERSECTION, and SET DIFFERENCE by
using sort-merge, where R has n tuples and S has m tuples. (a) Implementing the opera-
tion T ← R A=BS. (b) Implementing the operation T ← π<attribute list>(R).



(c) sort the tuples in R and S using the same unique sort attributes;
set i ← 1, j ← 1;
while (i ≤ n) and (j ≤ m)
do { if R( i ) > S( j )

then { output S( j ) to T;
set j ← j + 1

}
elseif R( i ) < S( j )

then { output R( i ) to T;
set i ← i + 1

}
else set j ← j + 1 (* R(i )=S ( j ) , so we skip one of the duplicate tuples *)

}
if (i ≤ n) then add tuples R( i ) to R(n) to T;
if (j ≤ m) then add tuples S( j ) to S(m) to T;

(d) sort the tuples in R and S using the same unique sort attributes;
set i ← 1, j ← 1;
while ( i ≤ n) and ( j ≤ m)
do { if R( i ) > S( j )

then set j ← j + 1
elseif R( i ) < S( j )

then set i ← i + 1
else { output R( j ) to T; (* R( i )=S( j ) , so we output the tuple *)

set i ← i + 1, j ← j + 1
}

}

(e) sort the tuples in R and S using the same unique sort attributes;
set i ← 1, j ← 1;
while (i n) and ( j ≤ m)
do { if R( i ) > S(j)

then set j ← j + 1
elseif R(i) < S( j )

then { output R( i )  to T; (* R( i ) has no matching S( j ) , so output R( i ) *)
set i ← i + 1

}
else set i ← i + 1, j ← j + 1

}
if (i ≤ n) then add tuples R( i ) to R(n ) to T;
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Figure 19.3 (continued)
Implementing JOIN, PROJECT, UNION, INTERSECTION, and SET DIFFERENCE by using
sort-merge, where R has n tuples and S has m tuples. (c) Implementing the operation T ← R

∪ S. (d) Implementing the operation T ← R ∩ S. (e) Implementing the operation T ← R – S.
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In the nested-loop join, it makes a difference which file is chosen for the outer loop
and which for the inner loop. If EMPLOYEE is used for the outer loop, each block of
EMPLOYEE is read once, and the entire DEPARTMENT file (each of its blocks) is read
once for each time we read in (nB – 2) blocks of the EMPLOYEE file. We get the follow-
ing formulas for the number of disk blocks that are read from disk to main memory:

Total number of blocks accessed (read) for outer-loop file = bE

Number of times (nB − 2) blocks of outer file are loaded into main memory 
= ⎡bE/(nB – 2)⎤

Total number of blocks accessed (read) for inner-loop file = bD * ⎡bE/(nB – 2)⎤

Hence, we get the following total number of block read accesses:

bE + ( ⎡bE/(nB – 2)⎤ * bD) = 2000 + ( ⎡(2000/5)⎤ * 10) = 6000 block accesses

On the other hand, if we use the DEPARTMENT records in the outer loop, by symme-
try we get the following total number of block accesses:

bD + ( ⎡bD/(nB – 2)⎤ * bE) = 10 + ( ⎡(10/5)⎤ * 2000) = 4010 block accesses

The join algorithm uses a buffer to hold the joined records of the result file. Once
the buffer is filled, it is written to disk and its contents are appended to the result
file, and then refilled with join result records.10

If the result file of the join operation has bRES disk blocks, each block is written once
to disk, so an additional bRES block accesses (writes) should be added to the preced-
ing formulas in order to estimate the total cost of the join operation. The same
holds for the formulas developed later for other join algorithms. As this example
shows, it is advantageous to use the file with fewer blocks as the outer-loop file in the
nested-loop join.

How the Join Selection Factor Affects Join Performance. Another factor that
affects the performance of a join, particularly the single-loop method J2, is the frac-
tion of records in one file that will be joined with records in the other file. We call
this the join selection factor11 of a file with respect to an equijoin condition with
another file. This factor depends on the particular equijoin condition between the
two files. To illustrate this, consider the operation OP7, which joins each
DEPARTMENT record with the EMPLOYEE record for the manager of that depart-
ment. Here, each DEPARTMENT record (there are 50 such records in our example)
will be joined with a single EMPLOYEE record, but many EMPLOYEE records (the
5,950 of them that do not manage a department) will not be joined with any record
from DEPARTMENT.

Suppose that secondary indexes exist on both the attributes Ssn of EMPLOYEE and
Mgr_ssn of DEPARTMENT, with the number of index levels xSsn = 4 and xMgr_ssn= 2,

10If we reserve two buffers for the result file, double buffering can be used to speed the algorithm (see
Section 17.3).
11This is different from the join selectivity, which we will discuss in Section 19.8.
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respectively. We have two options for implementing method J2. The first retrieves
each EMPLOYEE record and then uses the index on Mgr_ssn of DEPARTMENT to find
a matching DEPARTMENT record. In this case, no matching record will be found for
employees who do not manage a department. The number of block accesses for this
case is approximately:

bE + (rE * (xMgr_ssn + 1)) = 2000 + (6000 * 3) = 20,000 block accesses

The second option retrieves each DEPARTMENT record and then uses the index on
Ssn of EMPLOYEE to find a matching manager EMPLOYEE record. In this case, every
DEPARTMENT record will have one matching EMPLOYEE record. The number of
block accesses for this case is approximately:

bD + (rD * (xSsn + 1)) = 10 + (50 * 5) = 260 block accesses

The second option is more efficient because the join selection factor of
DEPARTMENT with respect to the join condition Ssn = Mgr_ssn is 1 (every record in
DEPARTMENT will be joined), whereas the join selection factor of EMPLOYEE with
respect to the same join condition is (50/6000), or 0.008 (only 0.8 percent of the
records in EMPLOYEE will be joined). For method J2, either the smaller file or the
file that has a match for every record (that is, the file with the high join selection fac-
tor) should be used in the (single) join loop. It is also possible to create an index
specifically for performing the join operation if one does not already exist.

The sort-merge join J3 is quite efficient if both files are already sorted by their join
attribute. Only a single pass is made through each file. Hence, the number of blocks
accessed is equal to the sum of the numbers of blocks in both files. For this method,
both OP6 and OP7 would need bE + bD = 2000 + 10 = 2010 block accesses. However,
both files are required to be ordered by the join attributes; if one or both are not, a
sorted copy of each file must be created specifically for performing the join opera-
tion. If we roughly estimate the cost of sorting an external file by (b log2b) block
accesses, and if both files need to be sorted, the total cost of a sort-merge join can be
estimated by (bE + bD + bE log2bE + bD log2bD).12

General Case for Partition-Hash Join. The hash-join method J4 is also quite
efficient. In this case only a single pass is made through each file, whether or not the
files are ordered. If the hash table for the smaller of the two files can be kept entirely
in main memory after hashing (partitioning) on its join attribute, the implementa-
tion is straightforward. If, however, the partitions of both files must be stored on
disk, the method becomes more complex, and a number of variations to improve
the efficiency have been proposed. We discuss two techniques: the general case of
partition-hash join and a variation called hybrid hash-join algorithm, which has been
shown to be quite efficient.

In the general case of partition-hash join, each file is first partitioned into M parti-
tions using the same partitioning hash function on the join attributes. Then, each

12We can use the more accurate formulas from Section 19.2 if we know the number of available buffers
for sorting.
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pair of corresponding partitions is joined. For example, suppose we are joining rela-
tions R and S on the join attributes R.A and S.B:

R A=B S

In the partitioning phase, R is partitioned into the M partitions R1, R2, ..., RM, and
S into the M partitions S1, S2, ..., SM. The property of each pair of corresponding
partitions Ri, Si with respect to the join operation is that records in Ri only need to be
joined with records in Si, and vice versa. This property is ensured by using the same
hash function to partition both files on their join attributes—attribute A for R and
attribute B for S. The minimum number of in-memory buffers needed for the
partitioning phase is M + 1. Each of the files R and S are partitioned separately.
During partitioning of a file, M in-memory buffers are allocated to store the records
that hash to each partition, and one additional buffer is needed to hold one block at
a time of the input file being partitioned. Whenever the in-memory buffer for a par-
tition gets filled, its contents are appended to a disk subfile that stores the partition.
The partitioning phase has two iterations. After the first iteration, the first file R is
partitioned into the subfiles R1, R2, ..., RM, where all the records that hashed to the
same buffer are in the same partition. After the second iteration, the second file S is
similarly partitioned.

In the second phase, called the joining or probing phase, M iterations are needed.
During iteration i, two corresponding partitions Ri and Si are joined. The minimum
number of buffers needed for iteration i is the number of blocks in the smaller of
the two partitions, say Ri, plus two additional buffers. If we use a nested-loop join
during iteration i, the records from the smaller of the two partitions Ri are copied
into memory buffers; then all blocks from the other partition Si are read—one at a
time—and each record is used to probe (that is, search) partition Ri for matching
record(s). Any matching records are joined and written into the result file. To
improve the efficiency of in-memory probing, it is common to use an in-memory
hash table for storing the records in partition Ri by using a different hash function
from the partitioning hash function.13

We can approximate the cost of this partition hash-join as 3 * (bR + bS) + bRES for
our example, since each record is read once and written back to disk once during the
partitioning phase. During the joining (probing) phase, each record is read a second
time to perform the join. The main difficulty of this algorithm is to ensure that the
partitioning hash function is uniform—that is, the partition sizes are nearly equal
in size. If the partitioning function is skewed (nonuniform), then some partitions
may be too large to fit in the available memory space for the second joining phase.

Notice that if the available in-memory buffer space nB > (bR + 2), where bR is the
number of blocks for the smaller of the two files being joined, say R, then there is no
reason to do partitioning since in this case the join can be performed entirely in
memory using some variation of the nested-loop join based on hashing and probing.

13If the hash function used for partitioning is used again, all records in a partition will hash to the same
bucket again.
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For illustration, assume we are performing the join operation OP6, repeated below:

OP6: EMPLOYEE Dno=Dnumber DEPARTMENT

In this example, the smaller file is the DEPARTMENT file; hence, if the number of
available memory buffers nB > (bD + 2), the whole DEPARTMENT file can be read
into main memory and organized into a hash table on the join attribute. Each
EMPLOYEE block is then read into a buffer, and each EMPLOYEE record in the buffer
is hashed on its join attribute and is used to probe the corresponding in-memory
bucket in the DEPARTMENT hash table. If a matching record is found, the records
are joined, and the result record(s) are written to the result buffer and eventually to
the result file on disk. The cost in terms of block accesses is hence (bD + bE), plus
bRES—the cost of writing the result file.

Hybrid Hash-Join. The hybrid hash-join algorithm is a variation of partition
hash-join, where the joining phase for one of the partitions is included in the
partitioning phase. To illustrate this, let us assume that the size of a memory buffer
is one disk block; that nB such buffers are available; and that the partitioning hash
function used is h(K) = K mod M, so that M partitions are being created, where M
< nB. For illustration, assume we are performing the join operation OP6. In the first
pass of the partitioning phase, when the hybrid hash-join algorithm is partitioning
the smaller of the two files (DEPARTMENT in OP6), the algorithm divides the buffer
space among the M partitions such that all the blocks of the first partition of
DEPARTMENT completely reside in main memory. For each of the other partitions,
only a single in-memory buffer—whose size is one disk block—is allocated; the
remainder of the partition is written to disk as in the regular partition-hash join.
Hence, at the end of the first pass of the partitioning phase, the first partition of
DEPARTMENT resides wholly in main memory, whereas each of the other partitions
of DEPARTMENT resides in a disk subfile.

For the second pass of the partitioning phase, the records of the second file being
joined—the larger file, EMPLOYEE in OP6—are being partitioned. If a record
hashes to the first partition, it is joined with the matching record in DEPARTMENT
and the joined records are written to the result buffer (and eventually to disk). If an
EMPLOYEE record hashes to a partition other than the first, it is partitioned nor-
mally and stored to disk. Hence, at the end of the second pass of the partitioning
phase, all records that hash to the first partition have been joined. At this point,
there are M − 1 pairs of partitions on disk. Therefore, during the second joining or
probing phase, M − 1 iterations are needed instead of M. The goal is to join as many
records during the partitioning phase so as to save the cost of storing those records
on disk and then rereading them a second time during the joining phase.

19.4 Algorithms for PROJECT and Set
Operations

A PROJECT operation π<attribute list>(R) is straightforward to implement if <attribute
list> includes a key of relation R, because in this case the result of the operation will
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have the same number of tuples as R, but with only the values for the attributes in
<attribute list> in each tuple. If <attribute list> does not include a key of R, duplicate
tuples must be eliminated. This can be done by sorting the result of the operation and
then eliminating duplicate tuples, which appear consecutively after sorting. A sketch
of the algorithm is given in Figure 19.3(b). Hashing can also be used to eliminate
duplicates: as each record is hashed and inserted into a bucket of the hash file in
memory, it is checked against those records already in the bucket; if it is a duplicate,
it is not inserted in the bucket. It is useful to recall here that in SQL queries, the
default is not to eliminate duplicates from the query result; duplicates are eliminated
from the query result only if the keyword DISTINCT is included.

Set operations—UNION, INTERSECTION, SET DIFFERENCE, and CARTESIAN
PRODUCT—are sometimes expensive to implement. In particular, the CARTESIAN
PRODUCT operation R × S is quite expensive because its result includes a record for
each combination of records from R and S. Also, each record in the result includes
all attributes of R and S. If R has n records and j attributes, and S has m records and
k attributes, the result relation for R × S will have n * m records and each record will
have j + k attributes. Hence, it is important to avoid the CARTESIAN PRODUCT
operation and to substitute other operations such as join during query optimization
(see Section 19.7).

The other three set operations—UNION, INTERSECTION, and SET
DIFFERENCE14—apply only to type-compatible (or union-compatible) relations,
which have the same number of attributes and the same attribute domains. The cus-
tomary way to implement these operations is to use variations of the sort-merge
technique: the two relations are sorted on the same attributes, and, after sorting, a
single scan through each relation is sufficient to produce the result. For example, we
can implement the UNION operation, R ∪ S, by scanning and merging both sorted
files concurrently, and whenever the same tuple exists in both relations, only one is
kept in the merged result. For the INTERSECTION operation, R ∩ S, we keep in the
merged result only those tuples that appear in both sorted relations. Figure 19.3(c) to
(e) sketches the implementation of these operations by sorting and merging. Some
of the details are not included in these algorithms.

Hashing can also be used to implement UNION, INTERSECTION, and SET DIFFER-
ENCE. One table is first scanned and then partitioned into an in-memory hash table
with buckets, and the records in the other table are then scanned one at a time and
used to probe the appropriate partition. For example, to implement R ∪ S, first hash
(partition) the records of R; then, hash (probe) the records of S, but do not insert
duplicate records in the buckets. To implement R ∩ S, first partition the records of
R to the hash file. Then, while hashing each record of S, probe to check if an identi-
cal record from R is found in the bucket, and if so add the record to the result file. To
implement R – S, first hash the records of R to the hash file buckets. While hashing
(probing) each record of S, if an identical record is found in the bucket, remove that
record from the bucket.

14SET DIFFERENCE is called EXCEPT in SQL.
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In SQL, there are two variations of these set operations. The operations UNION,
INTERSECTION, and EXCEPT (the SQL keyword for the SET DIFFERENCE opera-
tion) apply to traditional sets, where no duplicate records exist in the result. The
operations UNION ALL, INTERSECTION ALL, and EXCEPT ALL apply to multisets (or
bags), and duplicates are fully considered. Variations of the above algorithms can be
used for the multiset operations in SQL. We leave these as an exercise for the reader.

19.5 Implementing Aggregate Operations 
and OUTER JOINs

19.5.1 Implementing Aggregate Operations
The aggregate operators (MIN, MAX, COUNT, AVERAGE, SUM), when applied to an
entire table, can be computed by a table scan or by using an appropriate index, if
available. For example, consider the following SQL query:

SELECT MAX(Salary)
FROM EMPLOYEE;

If an (ascending) B+-tree index on Salary exists for the EMPLOYEE relation, then the
optimizer can decide on using the Salary index to search for the largest Salary value
in the index by following the rightmost pointer in each index node from the root to
the rightmost leaf. That node would include the largest Salary value as its last entry.
In most cases, this would be more efficient than a full table scan of EMPLOYEE, since
no actual records need to be retrieved. The MIN function can be handled in a similar
manner, except that the leftmost pointer in the index is followed from the root to
leftmost leaf. That node would include the smallest Salary value as its first entry.

The index could also be used for the AVERAGE and SUM aggregate functions, but
only if it is a dense index—that is, if there is an index entry for every record in the
main file. In this case, the associated computation would be applied to the values in
the index. For a nondense index, the actual number of records associated with each
index value must be used for a correct computation. This can be done if the number
of records associated with each value in the index is stored in each index entry. For the
COUNT aggregate function, the number of values can be also computed from the
index in a similar manner. If a COUNT(*) function is applied to a whole relation, the
number of records currently in each relation are typically stored in the catalog, and
so the result can be retrieved directly from the catalog.

When a GROUP BY clause is used in a query, the aggregate operator must be applied
separately to each group of tuples as partitioned by the grouping attribute. Hence,
the table must first be partitioned into subsets of tuples, where each partition
(group) has the same value for the grouping attributes. In this case, the computa-
tion is more complex. Consider the following query:

SELECT Dno, AVG(Salary)
FROM EMPLOYEE
GROUP BY Dno;
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The usual technique for such queries is to first use either sorting or hashing on the
grouping attributes to partition the file into the appropriate groups. Then the algo-
rithm computes the aggregate function for the tuples in each group, which have the
same grouping attribute(s) value. In the sample query, the set of EMPLOYEE tuples
for each department number would be grouped together in a partition and the aver-
age salary computed for each group.

Notice that if a clustering index (see Chapter 18) exists on the grouping
attribute(s), then the records are already partitioned (grouped) into the appropriate
subsets. In this case, it is only necessary to apply the computation to each group.

19.5.2 Implementing OUTER JOINs
In Section 6.4, the outer join operation was discussed, with its three variations: left
outer join, right outer join, and full outer join. We also discussed in Chapter 5 how
these operations can be specified in SQL. The following is an example of a left outer
join operation in SQL:

SELECT Lname, Fname, Dname
FROM (EMPLOYEE LEFT OUTER JOIN DEPARTMENT ON Dno=Dnumber);

The result of this query is a table of employee names and their associated depart-
ments. It is similar to a regular (inner) join result, with the exception that if an
EMPLOYEE tuple (a tuple in the left relation) does not have an associated department,
the employee’s name will still appear in the resulting table, but the department
name would be NULL for such tuples in the query result.

Outer join can be computed by modifying one of the join algorithms, such as
nested-loop join or single-loop join. For example, to compute a left outer join, we
use the left relation as the outer loop or single-loop because every tuple in the left
relation must appear in the result. If there are matching tuples in the other relation,
the joined tuples are produced and saved in the result. However, if no matching
tuple is found, the tuple is still included in the result but is padded with NULL
value(s). The sort-merge and hash-join algorithms can also be extended to compute
outer joins.

Theoretically, outer join can also be computed by executing a combination of rela-
tional algebra operators. For example, the left outer join operation shown above is
equivalent to the following sequence of relational operations:

1. Compute the (inner) JOIN of the EMPLOYEE and DEPARTMENT tables.

TEMP1 ← πLname, Fname, Dname (EMPLOYEE Dno=Dnumber DEPARTMENT)

2. Find the EMPLOYEE tuples that do not appear in the (inner) JOIN result.

TEMP2 ← πLname, Fname (EMPLOYEE) – πLname, Fname (TEMP1)

3. Pad each tuple in TEMP2 with a NULL Dname field.

TEMP2 ← TEMP2 × NULL
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4. Apply the UNION operation to TEMP1, TEMP2 to produce the LEFT OUTER
JOIN result.

RESULT ← TEMP1 ∪ TEMP2

The cost of the outer join as computed above would be the sum of the costs of the
associated steps (inner join, projections, set difference, and union). However, note
that step 3 can be done as the temporary relation is being constructed in step 2; that
is, we can simply pad each resulting tuple with a NULL. In addition, in step 4, we
know that the two operands of the union are disjoint (no common tuples), so there
is no need for duplicate elimination.

19.6 Combining Operations Using Pipelining
A query specified in SQL will typically be translated into a relational algebra expres-
sion that is a sequence of relational operations. If we execute a single operation at a
time, we must generate temporary files on disk to hold the results of these tempo-
rary operations, creating excessive overhead. Generating and storing large tempo-
rary files on disk is time-consuming and can be unnecessary in many cases, since
these files will immediately be used as input to the next operation. To reduce the
number of temporary files, it is common to generate query execution code that cor-
responds to algorithms for combinations of operations in a query.

For example, rather than being implemented separately, a JOIN can be combined
with two SELECT operations on the input files and a final PROJECT operation on
the resulting file; all this is implemented by one algorithm with two input files and a
single output file. Rather than creating four temporary files, we apply the algorithm
directly and get just one result file. In Section 19.7.2, we discuss how heuristic rela-
tional algebra optimization can group operations together for execution. This is
called pipelining or stream-based processing.

It is common to create the query execution code dynamically to implement multiple
operations. The generated code for producing the query combines several algo-
rithms that correspond to individual operations. As the result tuples from one oper-
ation are produced, they are provided as input for subsequent operations. For
example, if a join operation follows two select operations on base relations, the
tuples resulting from each select are provided as input for the join algorithm in a
stream or pipeline as they are produced.

19.7 Using Heuristics in Query Optimization
In this section we discuss optimization techniques that apply heuristic rules to
modify the internal representation of a query—which is usually in the form of a
query tree or a query graph data structure—to improve its expected performance.
The scanner and parser of an SQL query first generate a data structure that corre-
sponds to an initial query representation, which is then optimized according to
heuristic rules. This leads to an optimized query representation, which corresponds
to the query execution strategy. Following that, a query execution plan is generated
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to execute groups of operations based on the access paths available on the files
involved in the query.

One of the main heuristic rules is to apply SELECT and PROJECT operations before
applying the JOIN or other binary operations, because the size of the file resulting
from a binary operation—such as JOIN—is usually a multiplicative function of the
sizes of the input files. The SELECT and PROJECT operations reduce the size of a file
and hence should be applied before a join or other binary operation.

In Section 19.7.1 we reiterate the query tree and query graph notations that we
introduced earlier in the context of relational algebra and calculus in Sections 6.3.5
and 6.6.5, respectively. These can be used as the basis for the data structures that are
used for internal representation of queries. A query tree is used to represent a
relational algebra or extended relational algebra expression, whereas a query graph is
used to represent a relational calculus expression. Then in Section 19.7.2 we show
how heuristic optimization rules are applied to convert an initial query tree into an
equivalent query tree, which represents a different relational algebra expression
that is more efficient to execute but gives the same result as the original tree. We also
discuss the equivalence of various relational algebra expressions. Finally, Section
19.7.3 discusses the generation of query execution plans.

19.7.1 Notation for Query Trees and Query Graphs
A query tree is a tree data structure that corresponds to a relational algebra expres-
sion. It represents the input relations of the query as leaf nodes of the tree, and rep-
resents the relational algebra operations as internal nodes. An execution of the
query tree consists of executing an internal node operation whenever its operands
are available and then replacing that internal node by the relation that results from
executing the operation. The order of execution of operations starts at the leaf nodes,
which represents the input database relations for the query, and ends at the root
node, which represents the final operation of the query. The execution terminates
when the root node operation is executed and produces the result relation for the
query.

Figure 19.4a shows a query tree (the same as shown in Figure 6.9) for query Q2 in
Chapters 4 to 6: For every project located in ‘Stafford’, retrieve the project number,
the controlling department number, and the department manager’s last name,
address, and birthdate. This query is specified on the COMPANY relational schema
in Figure 3.5 and corresponds to the following relational algebra expression:

πPnumber, Dnum, Lname, Address, Bdate (((σPlocation=‘Stafford’(PROJECT))

Dnum=Dnumber(DEPARTMENT)) Mgr_ssn=Ssn(EMPLOYEE))

This corresponds to the following SQL query:

Q2: SELECT P.Pnumber, P.Dnum, E.Lname, E.Address, E.Bdate
FROM PROJECT AS P, DEPARTMENT AS D, EMPLOYEE AS E
WHERE P.Dnum=D.Dnumber AND D.Mgr_ssn=E.Ssn AND

P.Plocation= ‘Stafford’;
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Figure 19.4
Two query trees for the query Q2. (a) Query tree corresponding to the relational algebra
expression for Q2. (b) Initial (canonical) query tree for SQL query Q2. (c) Query graph for Q2.

In Figure 19.4a, the leaf nodes P, D, and E represent the three relations PROJECT,
DEPARTMENT, and EMPLOYEE, respectively, and the internal tree nodes represent
the relational algebra operations of the expression. When this query tree is executed,
the node marked (1) in Figure 19.4a must begin execution before node (2) because
some resulting tuples of operation (1) must be available before we can begin execut-
ing operation (2). Similarly, node (2) must begin executing and producing results
before node (3) can start execution, and so on.

As we can see, the query tree represents a specific order of operations for executing
a query. A more neutral data structure for representation of a query is the query
graph notation. Figure 19.4c (the same as shown in Figure 6.13) shows the query
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graph for query Q2. Relations in the query are represented by relation nodes, which
are displayed as single circles. Constant values, typically from the query selection
conditions, are represented by constant nodes, which are displayed as double circles
or ovals. Selection and join conditions are represented by the graph edges, as shown
in Figure 19.4c. Finally, the attributes to be retrieved from each relation are dis-
played in square brackets above each relation.

The query graph representation does not indicate an order on which operations to
perform first. There is only a single graph corresponding to each query.15 Although
some optimization techniques were based on query graphs, it is now generally
accepted that query trees are preferable because, in practice, the query optimizer
needs to show the order of operations for query execution, which is not possible in
query graphs.

19.7.2 Heuristic Optimization of Query Trees
In general, many different relational algebra expressions—and hence many different
query trees—can be equivalent; that is, they can represent the same query.16

The query parser will typically generate a standard initial query tree to correspond
to an SQL query, without doing any optimization. For example, for a SELECT-
PROJECT-JOIN query, such as Q2, the initial tree is shown in Figure 19.4(b). The
CARTESIAN PRODUCT of the relations specified in the FROM clause is first applied;
then the selection and join conditions of the WHERE clause are applied, followed by
the projection on the SELECT clause attributes. Such a canonical query tree repre-
sents a relational algebra expression that is very inefficient if executed directly,
because of the CARTESIAN PRODUCT (×) operations. For example, if the PROJECT,
DEPARTMENT, and EMPLOYEE relations had record sizes of 100, 50, and 150 bytes
and contained 100, 20, and 5,000 tuples, respectively, the result of the CARTESIAN
PRODUCT would contain 10 million tuples of record size 300 bytes each. However,
the initial query tree in Figure 19.4(b) is in a simple standard form that can be eas-
ily created from the SQL query. It will never be executed. The heuristic query opti-
mizer will transform this initial query tree into an equivalent final query tree that is
efficient to execute.

The optimizer must include rules for equivalence among relational algebra expres-
sions that can be applied to transform the initial tree into the final, optimized query
tree. First we discuss informally how a query tree is transformed by using heuristics,
and then we discuss general transformation rules and show how they can be used in
an algebraic heuristic optimizer.

Example of Transforming a Query. Consider the following query Q on the data-
base in Figure 3.5: Find the last names of employees born after 1957 who work on a
project named ‘Aquarius’. This query can be specified in SQL as follows:

15Hence, a query graph corresponds to a relational calculus expression as shown in Section 6.6.5.
16The same query may also be stated in various ways in a high-level query language such as SQL (see
Chapters 4 and 5).
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Q: SELECT Lname
FROM EMPLOYEE, WORKS_ON, PROJECT
WHERE Pname=‘Aquarius’ AND Pnumber=Pno AND Essn=Ssn

AND Bdate > ‘1957-12-31’;

The initial query tree for Q is shown in Figure 19.5(a). Executing this tree directly
first creates a very large file containing the CARTESIAN PRODUCT of the entire
EMPLOYEE, WORKS_ON, and PROJECT files. That is why the initial query tree is
never executed, but is transformed into another equivalent tree that is efficient to

(a) Lname

Pname=‘Aquarius’ AND Pnumber=Pno AND Essn=Ssn AND Bdate>‘1957-12-31’

PROJECT

WORKS_ONEMPLOYEE

(b) Lname

Pnumber=Pno

Bdate>‘1957-12-31’

Pname=‘Aquarius’Essn=Ssn

π

π

σ

σ

σσ

σ

EMPLOYEE

PROJECT

WORKS_ON

X

X

X

X

Figure 19.5
Steps in converting a query tree during heuristic optimization.
(a) Initial (canonical) query tree for SQL query Q.
(b) Moving SELECT operations down the query tree.
(c) Applying the more restrictive SELECT operation first.
(d) Replacing CARTESIAN PRODUCT and SELECT with JOIN operations.
(e) Moving PROJECT operations down the query tree.
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execute. This particular query needs only one record from the PROJECT relation—
for the ‘Aquarius’ project—and only the EMPLOYEE records for those whose date of
birth is after ‘1957-12-31’. Figure 19.5(b) shows an improved query tree that first
applies the SELECT operations to reduce the number of tuples that appear in the
CARTESIAN PRODUCT.

A further improvement is achieved by switching the positions of the EMPLOYEE and
PROJECT relations in the tree, as shown in Figure 19.5(c). This uses the information
that Pnumber is a key attribute of the PROJECT relation, and hence the SELECT
operation on the PROJECT relation will retrieve a single record only. We can further
improve the query tree by replacing any CARTESIAN PRODUCT operation that is
followed by a join condition with a JOIN operation, as shown in Figure 19.5(d).
Another improvement is to keep only the attributes needed by subsequent opera-
tions in the intermediate relations, by including PROJECT (π) operations as early as
possible in the query tree, as shown in Figure 19.5(e). This reduces the attributes
(columns) of the intermediate relations, whereas the SELECT operations reduce the
number of tuples (records).

As the preceding example demonstrates, a query tree can be transformed step by
step into an equivalent query tree that is more efficient to execute. However, we
must make sure that the transformation steps always lead to an equivalent query
tree. To do this, the query optimizer must know which transformation rules preserve
this equivalence. We discuss some of these transformation rules next.

General Transformation Rules for Relational Algebra Operations. There are
many rules for transforming relational algebra operations into equivalent ones. For
query optimization purposes, we are interested in the meaning of the operations
and the resulting relations. Hence, if two relations have the same set of attributes in
a different order but the two relations represent the same information, we consider
the relations to be equivalent. In Section 3.1.2 we gave an alternative definition of
relation that makes the order of attributes unimportant; we will use this definition
here. We will state some transformation rules that are useful in query optimization,
without proving them:

1. Cascade of σ A conjunctive selection condition can be broken up into a cas-
cade (that is, a sequence) of individual σ operations:

σc1 AND c2 AND . . . AND cn
(R)� σc1

(σc2
(...(σcn

(R))...))

2. Commutativity of σ. The σ operation is commutative:

σc1
(σc2

(R)) � σc2
(σc1

(R))

3. Cascade of π. In a cascade (sequence) of π operations, all but the last one can
be ignored:

πList1
(πList2

(...(πListn
(R))...)) � πList1

(R)

4. Commuting σ with π. If the selection condition c involves only those attrib-
utes A1, . . . , An in the projection list, the two operations can be commuted:

πA1, A2, ..., An
(σc (R)) � σc (πA1, A2, ..., An

(R))
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5. Commutativity of (and ×). The join operation is commutative, as is the
× operation:

R c S ≡ S c R

R × S ≡ S × R

Notice that although the order of attributes may not be the same in the rela-
tions resulting from the two joins (or two Cartesian products), the meaning
is the same because the order of attributes is not important in the alternative
definition of relation.

6. Commuting σ with (or ×). If all the attributes in the selection condition
c involve only the attributes of one of the relations being joined—say, R—the
two operations can be commuted as follows:

σc (R S) ≡ (σc (R)) S

Alternatively, if the selection condition c can be written as (c1 AND c2), where
condition c1 involves only the attributes of R and condition c2 involves only
the attributes of S, the operations commute as follows:

σc (R S) � (σc1
(R)) (σc2

(S))

The same rules apply if the is replaced by a × operation.

7. Commuting π with (or ×). Suppose that the projection list is L = {A1, ...,
An, B1, ..., Bm} , where A1, ..., An are attributes of R and B1, ..., Bm are attrib-
utes of S. If the join condition c involves only attributes in L, the two opera-
tions can be commuted as follows:

πL (R c S) � (πA1, ..., An
(R)) c (πB1, ..., Bm

(S))

If the join condition c contains additional attributes not in L, these must be
added to the projection list, and a final π operation is needed. For example, if
attributes An+1, ..., An+k of R and Bm+1, ..., Bm+p of S are involved in the join
condition c but are not in the projection list L, the operations commute as
follows:

πL (R c S) � πL ((πA1, ..., An, An+1, ..., An+k
(R)) c (πB1, ..., Bm, Bm+1, ..., Bm+p

(S)))

For ×, there is no condition c, so the first transformation rule always applies
by replacing c with ×.

8. Commutativity of set operations. The set operations ∪ and ∩ are commu-
tative but − is not.

9. Associativity of , ×, ∪, and ∩. These four operations are individually
associative; that is, if θ stands for any one of these four operations (through-
out the expression), we have:

(R θ S) θ T ≡ R θ (S θ T)

10. Commuting σ with set operations. The σ operation commutes with ∪, ∩,
and −. If θ stands for any one of these three operations (throughout the
expression), we have:

σc (R θ S) ≡ (σc (R)) θ (σc (S))
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11. The π operation commutes with ∪.

πL (R ∪ S) ≡ (πL (R)) ∪ (πL (S))

12. Converting a (σ, ×) sequence into . If the condition c of a σ that follows a
× corresponds to a join condition, convert the (σ, ×) sequence into a as
follows:

(σc (R × S)) ≡ (R c S)

There are other possible transformations. For example, a selection or join condition
c can be converted into an equivalent condition by using the following standard
rules from Boolean algebra (DeMorgan’s laws):

NOT (c1 AND c2) ≡ (NOT c1) OR (NOT c2)

NOT (c1 OR c2) ≡ (NOT c1) AND (NOT c2)

Additional transformations discussed in Chapters 4, 5, and 6 are not repeated here.
We discuss next how transformations can be used in heuristic optimization.

Outline of a Heuristic Algebraic Optimization Algorithm. We can now out-
line the steps of an algorithm that utilizes some of the above rules to transform an
initial query tree into a final tree that is more efficient to execute (in most cases).
The algorithm will lead to transformations similar to those discussed in our exam-
ple in Figure 19.5. The steps of the algorithm are as follows:

1. Using Rule 1, break up any SELECT operations with conjunctive conditions
into a cascade of SELECT operations. This permits a greater degree of free-
dom in moving SELECT operations down different branches of the tree.

2. Using Rules 2, 4, 6, and 10 concerning the commutativity of SELECT with
other operations, move each SELECT operation as far down the query tree as
is permitted by the attributes involved in the select condition. If the condi-
tion involves attributes from only one table, which means that it represents a
selection condition, the operation is moved all the way to the leaf node that
represents this table. If the condition involves attributes from two tables,
which means that it represents a join condition, the condition is moved to a
location down the tree after the two tables are combined.

3. Using Rules 5 and 9 concerning commutativity and associativity of binary
operations, rearrange the leaf nodes of the tree using the following criteria.
First, position the leaf node relations with the most restrictive SELECT oper-
ations so they are executed first in the query tree representation. The defini-
tion of most restrictive SELECT can mean either the ones that produce a
relation with the fewest tuples or with the smallest absolute size.17 Another
possibility is to define the most restrictive SELECT as the one with the small-
est selectivity; this is more practical because estimates of selectivities are
often available in the DBMS catalog. Second, make sure that the ordering of
leaf nodes does not cause CARTESIAN PRODUCT operations; for example, if

17Either definition can be used, since these rules are heuristic.
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the two relations with the most restrictive SELECT do not have a direct join
condition between them, it may be desirable to change the order of leaf
nodes to avoid Cartesian products.18

4. Using Rule 12, combine a CARTESIAN PRODUCT operation with a subse-
quent SELECT operation in the tree into a JOIN operation, if the condition
represents a join condition.

5. Using Rules 3, 4, 7, and 11 concerning the cascading of PROJECT and the
commuting of PROJECT with other operations, break down and move lists
of projection attributes down the tree as far as possible by creating new
PROJECT operations as needed. Only those attributes needed in the query
result and in subsequent operations in the query tree should be kept after
each PROJECT operation.

6. Identify subtrees that represent groups of operations that can be executed by
a single algorithm.

In our example, Figure 19.5(b) shows the tree in Figure 19.5(a) after applying steps
1 and 2 of the algorithm; Figure 19.5(c) shows the tree after step 3; Figure 19.5(d)
after step 4; and Figure 19.5(e) after step 5. In step 6 we may group together the
operations in the subtree whose root is the operation πEssn into a single algorithm.
We may also group the remaining operations into another subtree, where the tuples
resulting from the first algorithm replace the subtree whose root is the operation
πEssn, because the first grouping means that this subtree is executed first.

Summary of Heuristics for Algebraic Optimization. The main heuristic is to
apply first the operations that reduce the size of intermediate results. This includes
performing as early as possible SELECT operations to reduce the number of tuples
and PROJECT operations to reduce the number of attributes—by moving SELECT
and PROJECT operations as far down the tree as possible. Additionally, the SELECT
and JOIN operations that are most restrictive—that is, result in relations with the
fewest tuples or with the smallest absolute size—should be executed before other
similar operations. The latter rule is accomplished through reordering the leaf
nodes of the tree among themselves while avoiding Cartesian products, and adjust-
ing the rest of the tree appropriately.

19.7.3 Converting Query Trees into Query Execution Plans
An execution plan for a relational algebra expression represented as a query tree
includes information about the access methods available for each relation as well as
the algorithms to be used in computing the relational operators represented in the
tree. As a simple example, consider query Q1 from Chapter 4, whose corresponding
relational algebra expression is

πFname, Lname, Address(σDname=‘Research’(DEPARTMENT) Dnumber=Dno EMPLOYEE)

18Note that a CARTESIAN PRODUCT is acceptable in some cases—for example, if each relation has
only a single tuple because each had a previous select condition on a key field.
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π Fname, Lname, Address

σ Dname=‘Research’

DEPARTMENT

EMPLOYEE

Dnumber=Dno

Figure 19.6
A query tree for query Q1.

The query tree is shown in Figure 19.6. To convert this into an execution plan, the
optimizer might choose an index search for the SELECT operation on DEPARTMENT
(assuming one exists), a single-loop join algorithm that loops over the records in the
result of the SELECT operation on DEPARTMENT for the join operation (assuming
an index exists on the Dno attribute of EMPLOYEE), and a scan of the JOIN result for
input to the PROJECT operator. Additionally, the approach taken for executing the
query may specify a materialized or a pipelined evaluation, although in general a
pipelined evaluation is preferred whenever feasible.

With materialized evaluation, the result of an operation is stored as a temporary
relation (that is, the result is physically materialized). For instance, the JOIN opera-
tion can be computed and the entire result stored as a temporary relation, which is
then read as input by the algorithm that computes the PROJECT operation, which
would produce the query result table. On the other hand, with pipelined
evaluation, as the resulting tuples of an operation are produced, they are forwarded
directly to the next operation in the query sequence. For example, as the selected
tuples from DEPARTMENT are produced by the SELECT operation, they are placed
in a buffer; the JOIN operation algorithm would then consume the tuples from the
buffer, and those tuples that result from the JOIN operation are pipelined to the pro-
jection operation algorithm. The advantage of pipelining is the cost savings in not
having to write the intermediate results to disk and not having to read them back for
the next operation.

19.8 Using Selectivity and Cost Estimates 
in Query Optimization

A query optimizer does not depend solely on heuristic rules; it also estimates and
compares the costs of executing a query using different execution strategies and
algorithms, and it then chooses the strategy with the lowest cost estimate. For this
approach to work, accurate cost estimates are required so that different strategies can
be compared fairly and realistically. In addition, the optimizer must limit the num-
ber of execution strategies to be considered; otherwise, too much time will be spent
making cost estimates for the many possible execution strategies. Hence, this
approach is more suitable for compiled queries where the optimization is done at
compile time and the resulting execution strategy code is stored and executed
directly at runtime. For interpreted queries, where the entire process shown in
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Figure 19.1 occurs at runtime, a full-scale optimization may slow down the response
time. A more elaborate optimization is indicated for compiled queries, whereas a
partial, less time-consuming optimization works best for interpreted queries.

This approach is generally referred to as cost-based query optimization.19 It uses
traditional optimization techniques that search the solution space to a problem for a
solution that minimizes an objective (cost) function. The cost functions used in
query optimization are estimates and not exact cost functions, so the optimization
may select a query execution strategy that is not the optimal (absolute best) one. In
Section 19.8.1 we discuss the components of query execution cost. In Section 19.8.2
we discuss the type of information needed in cost functions. This information is
kept in the DBMS catalog. In Section 19.8.3 we give examples of cost functions for
the SELECT operation, and in Section 19.8.4 we discuss cost functions for two-way
JOIN operations. Section 19.8.5 discusses multiway joins, and Section 19.8.6 gives an
example.

19.8.1 Cost Components for Query Execution
The cost of executing a query includes the following components:

1. Access cost to secondary storage. This is the cost of transferring (reading
and writing) data blocks between secondary disk storage and main memory
buffers. This is also known as disk I/O (input/output) cost. The cost of search-
ing for records in a disk file depends on the type of access structures on that
file, such as ordering, hashing, and primary or secondary indexes. In addi-
tion, factors such as whether the file blocks are allocated contiguously on the
same disk cylinder or scattered on the disk affect the access cost.

2. Disk storage cost. This is the cost of storing on disk any intermediate files
that are generated by an execution strategy for the query.

3. Computation cost. This is the cost of performing in-memory operations on
the records within the data buffers during query execution. Such operations
include searching for and sorting records, merging records for a join or a sort
operation, and performing computations on field values. This is also known
as CPU (central processing unit) cost.

4. Memory usage cost. This is the cost pertaining to the number of main mem-
ory buffers needed during query execution.

5. Communication cost. This is the cost of shipping the query and its results
from the database site to the site or terminal where the query originated. In
distributed databases (see Chapter 25), it would also include the cost of trans-
ferring tables and results among various computers during query evaluation.

For large databases, the main emphasis is often on minimizing the access cost to sec-
ondary storage. Simple cost functions ignore other factors and compare different
query execution strategies in terms of the number of block transfers between disk

19This approach was first used in the optimizer for the SYSTEM R in an experimental DBMS developed
at IBM (Selinger et al. 1979).



712 Chapter 19 Algorithms for Query Processing and Optimization

and main memory buffers. For smaller databases, where most of the data in the files
involved in the query can be completely stored in memory, the emphasis is on min-
imizing computation cost. In distributed databases, where many sites are involved
(see Chapter 25), communication cost must be minimized also. It is difficult to
include all the cost components in a (weighted) cost function because of the diffi-
culty of assigning suitable weights to the cost components. That is why some cost
functions consider a single factor only—disk access. In the next section we discuss
some of the information that is needed for formulating cost functions.

19.8.2 Catalog Information Used in Cost Functions
To estimate the costs of various execution strategies, we must keep track of any
information that is needed for the cost functions. This information may be stored in
the DBMS catalog, where it is accessed by the query optimizer. First, we must know
the size of each file. For a file whose records are all of the same type, the number of
records (tuples) (r), the (average) record size (R), and the number of file blocks (b)
(or close estimates of them) are needed. The blocking factor (bfr) for the file may
also be needed. We must also keep track of the primary file organization for each file.
The primary file organization records may be unordered, ordered by an attribute
with or without a primary or clustering index, or hashed (static hashing or one of
the dynamic hashing methods) on a key attribute. Information is also kept on all
primary, secondary, or clustering indexes and their indexing attributes. The number
of levels (x) of each multilevel index (primary, secondary, or clustering) is needed
for cost functions that estimate the number of block accesses that occur during
query execution. In some cost functions the number of first-level index blocks
(bI1) is needed.

Another important parameter is the number of distinct values (d) of an attribute
and the attribute selectivity (sl), which is the fraction of records satisfying an equal-
ity condition on the attribute. This allows estimation of the selection cardinality (s
= sl*r) of an attribute, which is the average number of records that will satisfy an
equality selection condition on that attribute. For a key attribute, d = r, sl = 1/r and s
= 1. For a nonkey attribute, by making an assumption that the d distinct values are
uniformly distributed among the records, we estimate sl = (1/d) and so s = (r/d).20

Information such as the number of index levels is easy to maintain because it does
not change very often. However, other information may change frequently; for
example, the number of records r in a file changes every time a record is inserted or
deleted. The query optimizer will need reasonably close but not necessarily com-
pletely up-to-the-minute values of these parameters for use in estimating the cost of
various execution strategies.

For a nonkey attribute with d distinct values, it is often the case that the records are
not uniformly distributed among these values. For example, suppose that a com-
pany has 5 departments numbered 1 through 5, and 200 employees who are distrib-

20More accurate optimizers store histograms of the distribution of records over the data values for an
attribute.
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uted among the departments as follows: (1, 5), (2, 25), (3, 70), (4, 40), (5, 60). In
such cases, the optimizer can store a histogram that reflects the distribution of
employee records over different departments in a table with the two attributes (Dno,
Selectivity), which would contain the following values for our example: (1, 0.025), (2,
0.125), (3, 0.35), (4, 0.2), (5, 0.3). The selectivity values stored in the histogram can
also be estimates if the employee table changes frequently.

In the next two sections we examine how some of these parameters are used in cost
functions for a cost-based query optimizer.

19.8.3 Examples of Cost Functions for SELECT
We now give cost functions for the selection algorithms S1 to S8 discussed in
Section 19.3.1 in terms of number of block transfers between memory and disk.
Algorithm S9 involves an intersection of record pointers after they have been
retrieved by some other means, such as algorithm S6, and so the cost function will
be based on the cost for S6. These cost functions are estimates that ignore compu-
tation time, storage cost, and other factors. The cost for method Si is referred to as
CSi block accesses.

■ S1—Linear search (brute force) approach. We search all the file blocks to
retrieve all records satisfying the selection condition; hence, CS1a = b. For an
equality condition on a key attribute, only half the file blocks are searched on
the average before finding the record, so a rough estimate for CS1b = (b/2) if
the record is found; if no record is found that satisfies the condition, CS1b = b.

■ S2—Binary search. This search accesses approximately CS2 = log2b +
⎡(s/bfr)⎤ − 1 file blocks. This reduces to log2b if the equality condition is on a
unique (key) attribute, because s = 1 in this case.

■ S3a—Using a primary index to retrieve a single record. For a primary
index, retrieve one disk block at each index level, plus one disk block from
the data file. Hence, the cost is one more disk block than the number of
index levels: CS3a = x + 1.

■ S3b—Using a hash key to retrieve a single record. For hashing, only one
disk block needs to be accessed in most cases. The cost function is approxi-
mately CS3b = 1 for static hashing or linear hashing, and it is 2 disk block
accesses for extendible hashing (see Section 17.8).

■ S4—Using an ordering index to retrieve multiple records. If the compari-
son condition is >, >=, <, or <= on a key field with an ordering index,
roughly half the file records will satisfy the condition. This gives a cost func-
tion of CS4 = x + (b/2). This is a very rough estimate, and although it may be
correct on the average, it may be quite inaccurate in individual cases. A more
accurate estimate is possible if the distribution of records is stored in a his-
togram.

■ S5—Using a clustering index to retrieve multiple records. One disk block
is accessed at each index level, which gives the address of the first file disk
block in the cluster. Given an equality condition on the indexing attribute, s
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records will satisfy the condition, where s is the selection cardinality of the
indexing attribute. This means that ⎡(s/bfr)⎤ file blocks will be in the cluster
of file blocks that hold all the selected records, giving CS5 = x + ⎡(s/bfr)⎤.

■ S6—Using a secondary (B+-tree) index. For a secondary index on a key
(unique) attribute, the cost is x + 1 disk block accesses. For a secondary index
on a nonkey (nonunique) attribute, s records will satisfy an equality condi-
tion, where s is the selection cardinality of the indexing attribute. However,
because the index is nonclustering, each of the records may reside on a differ-
ent disk block, so the (worst case) cost estimate is CS6a = x + 1 + s. The addi-
tional 1 is to account for the disk block that contains the record pointers after
the index is searched (see Figure 18.5). If the comparison condition is >, >=,
<, or <= and half the file records are assumed to satisfy the condition, then
(very roughly) half the first-level index blocks are accessed, plus half the file
records via the index. The cost estimate for this case, approximately, is CS6b =
x + (bI1/2) + (r/2). The r/2 factor can be refined if better selectivity estimates
are available through a histogram. The latter method CS6b can be very costly.

■ S7—Conjunctive selection. We can use either S1 or one of the methods S2
to S6 discussed above. In the latter case, we use one condition to retrieve the
records and then check in the main memory buffers whether each retrieved
record satisfies the remaining conditions in the conjunction. If multiple
indexes exist, the search of each index can produce a set of record pointers
(record ids) in the main memory buffers. The intersection of the sets of
record pointers (referred to in S9) can be computed in main memory, and
then the resulting records are retrieved based on their record ids.

■ S8—Conjunctive selection using a composite index. Same as S3a, S5, or
S6a, depending on the type of index.

Example of Using the Cost Functions. In a query optimizer, it is common to
enumerate the various possible strategies for executing a query and to estimate the
costs for different strategies. An optimization technique, such as dynamic program-
ming, may be used to find the optimal (least) cost estimate efficiently, without hav-
ing to consider all possible execution strategies. We do not discuss optimization
algorithms here; rather, we use a simple example to illustrate how cost estimates
may be used. Suppose that the EMPLOYEE file in Figure 3.5 has rE = 10,000 records
stored in bE = 2000 disk blocks with blocking factor bfrE = 5 records/block and the
following access paths:

1. A clustering index on Salary, with levels xSalary = 3 and average selection car-
dinality sSalary = 20. (This corresponds to a selectivity of slSalary = 0.002).

2. A secondary index on the key attribute Ssn, with xSsn = 4 (sSsn = 1, slSsn =
0.0001).

3. A secondary index on the nonkey attribute Dno, with xDno = 2 and first-level
index blocks bI1Dno = 4. There are dDno = 125 distinct values for Dno, so the
selectivity of Dno is slDno = (1/dDno) = 0.008, and the selection cardinality is
sDno = (rE * slDno) = (rE/dDno) = 80.
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4. A secondary index on Sex, with xSex = 1. There are dSex = 2 values for the Sex
attribute, so the average selection cardinality is sSex = (rE/dSex) = 5000. (Note
that in this case, a histogram giving the percentage of male and female
employees may be useful, unless they are approximately equal.)

We illustrate the use of cost functions with the following examples:

OP1:  σSsn=‘123456789’(EMPLOYEE)

OP2:  σDno>5(EMPLOYEE)

OP3:  σDno=5(EMPLOYEE)

OP4:  σDno=5 AND SALARY>30000 AND Sex=‘F’(EMPLOYEE)

The cost of the brute force (linear search or file scan) option S1 will be estimated as
CS1a = bE = 2000 (for a selection on a nonkey attribute) or CS1b = (bE/2) = 1000
(average cost for a selection on a key attribute). For OP1 we can use either method
S1 or method S6a; the cost estimate for S6a is CS6a = xSsn + 1 = 4 + 1 = 5, and it is
chosen over method S1, whose average cost is CS1b = 1000. For OP2 we can use
either method S1 (with estimated cost CS1a = 2000) or method S6b (with estimated
cost CS6b = xDno + (bI1Dno/2) + (rE /2) = 2 + (4/2) + (10,000/2) = 5004), so we choose
the linear search approach for OP2. For OP3 we can use either method S1 (with esti-
mated cost CS1a = 2000) or method S6a (with estimated cost CS6a = xDno + sDno = 2
+ 80 = 82), so we choose method S6a.

Finally, consider OP4, which has a conjunctive selection condition. We need to esti-
mate the cost of using any one of the three components of the selection condition to
retrieve the records, plus the linear search approach. The latter gives cost estimate
CS1a = 2000. Using the condition (Dno = 5) first gives the cost estimate CS6a = 82.
Using the condition (Salary > 30,000) first gives a cost estimate CS4 = xSalary + (bE/2)
= 3 + (2000/2) = 1003. Using the condition (Sex = ‘F’) first gives a cost estimate CS6a
= xSex + sSex = 1 + 5000 = 5001. The optimizer would then choose method S6a on
the secondary index on Dno because it has the lowest cost estimate. The condition
(Dno = 5) is used to retrieve the records, and the remaining part of the conjunctive
condition (Salary > 30,000 AND Sex = ‘F’) is checked for each selected record after it
is retrieved into memory. Only the records that satisfy these additional conditions
are included in the result of the operation.

19.8.4 Examples of Cost Functions for JOIN
To develop reasonably accurate cost functions for JOIN operations, we need to have
an estimate for the size (number of tuples) of the file that results after the JOIN oper-
ation. This is usually kept as a ratio of the size (number of tuples) of the resulting
join file to the size of the CARTESIAN PRODUCT file, if both are applied to the same
input files, and it is called the join selectivity ( js). If we denote the number of tuples
of a relation R by |R|, we have:

js = |(R c S)| / |(R × S)| = |(R c S)| / (|R| * |S|)

If there is no join condition c, then js = 1 and the join is the same as the CARTESIAN
PRODUCT. If no tuples from the relations satisfy the join condition, then js = 0. In
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general, 0 js 1. For a join where the condition c is an equality comparison R.A =
S.B, we get the following two special cases:

1. If A is a key of R, then |(R c S)| ≤ |S|, so js ≤ (1/|R|). This is because each
record in file S will be joined with at most one record in file R, since A is a key
of R. A special case of this condition is when attribute B is a foreign key of S
that references the primary key A of R. In addition, if the foreign key B has
the NOT NULL constraint, then js = (1/|R|), and the result file of the join
will contain |S| records.

2. If B is a key of S, then |(R c S)| ≤ |R|, so js ≤ (1/|S|).

Having an estimate of the join selectivity for commonly occurring join conditions
enables the query optimizer to estimate the size of the resulting file after the join
operation, given the sizes of the two input files, by using the formula |(R c S)| = js

* |R| * |S|. We can now give some sample approximate cost functions for estimating
the cost of some of the join algorithms given in Section 19.3.2. The join operations
are of the form:

R A=B S

where A and B are domain-compatible attributes of R and S, respectively. Assume
that R has bR blocks and that S has bS blocks:

■ J1—Nested-loop join. Suppose that we use R for the outer loop; then we get
the following cost function to estimate the number of block accesses for this
method, assuming three memory buffers. We assume that the blocking factor
for the resulting file is bfrRS and that the join selectivity is known:

CJ1 = bR + (bR * bS) + (( js * |R| * |S|)/bfrRS)

The last part of the formula is the cost of writing the resulting file to disk.
This cost formula can be modified to take into account different numbers of
memory buffers, as presented in Section 19.3.2. If nB main memory buffers
are available to perform the join, the cost formula becomes:

CJ1 = bR + ( ⎡bR/(nB – 2)⎤ * bS) + ((js * |R| * |S|)/bfrRS)

■ J2—Single-loop join (using an access structure to retrieve the matching
record(s)). If an index exists for the join attribute B of S with index levels xB,
we can retrieve each record s in R and then use the index to retrieve all the
matching records t from S that satisfy t[B] = s[A]. The cost depends on the
type of index. For a secondary index where sB is the selection cardinality for
the join attribute B of S,21 we get:

CJ2a = bR + (|R| * (xB + 1 + sB)) + (( js * |R| * |S|)/bfrRS)

For a clustering index where sB is the selection cardinality of B, we get

CJ2b = bR + (|R| * (xB + (sB/bfrB))) + (( js * |R| * |S|)/bfrRS)

For a primary index, we get

21Selection cardinality was defined as the average number of records that satisfy an equality condition
on an attribute, which is the average number of records that have the same value for the attribute and
hence will be joined to a single record in the other file.
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CJ2c = bR + (|R| * (xB + 1)) + (( j s * |R| * |S|)/bfrRS)

If a hash key exists for one of the two join attributes—say, B of S—we get

CJ2d = bR + (|R| * h) + (( j s * |R| * |S|)/bfrRS)

where h ≥ 1 is the average number of block accesses to retrieve a record,
given its hash key value. Usually, h is estimated to be 1 for static and linear
hashing and 2 for extendible hashing.

■ J3—Sort-merge join. If the files are already sorted on the join attributes, the
cost function for this method is

CJ3a = bR + bS + (( j s * |R| * |S|)/bfrRS)

If we must sort the files, the cost of sorting must be added. We can use the
formulas from Section 19.2 to estimate the sorting cost.

Example of Using the Cost Functions. Suppose that we have the EMPLOYEE
file described in the example in the previous section, and assume that the
DEPARTMENT file in Figure 3.5 consists of rD = 125 records stored in bD = 13 disk
blocks. Consider the following two join operations:

OP6:  EMPLOYEE Dno=Dnumber DEPARTMENT
OP7:  DEPARTMENT Mgr_ssn=Ssn EMPLOYEE

Suppose that we have a primary index on Dnumber of DEPARTMENT with xDnumber= 1
level and a secondary index on Mgr_ssn of DEPARTMENT with selection cardinality
sMgr_ssn= 1 and levels xMgr_ssn= 2. Assume that the join selectivity for OP6 is jsOP6 =
(1/|DEPARTMENT|) = 1/125 because Dnumber is a key of DEPARTMENT. Also assume
that the blocking factor for the resulting join file is bfrED= 4 records per block. We
can estimate the worst-case costs for the JOIN operation OP6 using the applicable
methods J1 and J2 as follows:

1. Using method J1 with EMPLOYEE as outer loop:

CJ1 = bE + (bE * bD) + (( jsOP6 * rE * rD)/bfrED)

= 2000 + (2000 * 13) + (((1/125) * 10,000 * 125)/4) = 30,500

2. Using method J1 with DEPARTMENT as outer loop:

CJ1 = bD + (bE * bD) + (( jsOP6 * rE * rD)/bfrED)

= 13 + (13 * 2000) + (((1/125) * 10,000 * 125/4) = 28,513

3. Using method J2 with EMPLOYEE as outer loop:

CJ2c = bE + (rE * (xDnumber+ 1)) + (( jsOP6 * rE * rD)/bfrED

= 2000 + (10,000 * 2) + (((1/125) * 10,000 * 125/4) = 24,500

4. Using method J2 with DEPARTMENT as outer loop:

CJ2a = bD + (rD * (xDno + sDno)) + (( jsOP6 * rE * rD)/bfrED)

= 13 + (125 * (2 + 80)) + (((1/125) * 10,000 * 125/4) = 12,763

Case 4 has the lowest cost estimate and will be chosen. Notice that in case 2 above, if
15 memory buffers (or more) were available for executing the join instead of just 3,
13 of them could be used to hold the entire DEPARTMENT relation (outer loop 



718 Chapter 19 Algorithms for Query Processing and Optimization

R1 R2

R3

R4

R4 R3

R2

R1

Figure 19.7
Two left-deep (JOIN) query trees.

relation) in memory, one could be used as buffer for the result, and one would be
used to hold one block at a time of the EMPLOYEE file (inner loop file), and the cost
for case 2 could be drastically reduced to just bE + bD + (( jsOP6 * rE * rD)/bfrED) or
4,513, as discussed in Section 19.3.2. If some other number of main memory buffers
was available, say nB = 10, then the cost for case 2 would be calculated as follows,
which would also give better performance than case 4:

CJ1 = bD + ( ⎡bD/(nB – 2)⎤ * bE) + ((js * |R| * |S|)/bfrRS)

= 13 + ( ⎡13/8⎤ * 2000) + (((1/125) * 10,000 * 125/4) = 28,513

= 13 + (2 * 2000) + 2500 = 6,513

As an exercise, the reader should perform a similar analysis for OP7.

19.8.5 Multiple Relation Queries and JOIN Ordering
The algebraic transformation rules in Section 19.7.2 include a commutative rule
and an associative rule for the join operation. With these rules, many equivalent join
expressions can be produced. As a result, the number of alternative query trees
grows very rapidly as the number of joins in a query increases. A query that joins n
relations will often have n − 1 join operations, and hence can have a large number of
different join orders. Estimating the cost of every possible join tree for a query with
a large number of joins will require a substantial amount of time by the query opti-
mizer. Hence, some pruning of the possible query trees is needed. Query optimizers
typically limit the structure of a (join) query tree to that of left-deep (or right-deep)
trees. A left-deep tree is a binary tree in which the right child of each nonleaf node
is always a base relation. The optimizer would choose the particular left-deep tree
with the lowest estimated cost. Two examples of left-deep trees are shown in Figure
19.7. (Note that the trees in Figure 19.5 are also left-deep trees.)

With left-deep trees, the right child is considered to be the inner relation when exe-
cuting a nested-loop join, or the probing relation when executing a single-loop join.
One advantage of left-deep (or right-deep) trees is that they are amenable to
pipelining, as discussed in Section 19.6. For instance, consider the first left-deep tree
in Figure 19.7 and assume that the join algorithm is the single-loop method; in this
case, a disk page of tuples of the outer relation is used to probe the inner relation for
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matching tuples. As resulting tuples (records) are produced from the join of R1 and
R2, they can be used to probe R3 to locate their matching records for joining.
Likewise, as resulting  tuples are produced from this join, they could be used to
probe R4. Another advantage of left-deep (or right-deep) trees is that having a base
relation as one of the inputs of each join allows the optimizer to utilize any access
paths on that relation that may be useful in executing the join.

If materialization is used instead of pipelining (see Sections 19.6 and 19.7.3), the
join results could be materialized and stored as temporary relations. The key idea
from the optimizer’s standpoint with respect to join ordering is to find an ordering
that will reduce the size of the temporary results, since the temporary results
(pipelined or materialized) are used by subsequent operators and hence affect the
execution cost of those operators.

19.8.6 Example to Illustrate Cost-Based Query Optimization
We will consider query Q2 and its query tree shown in Figure 19.4(a) to illustrate
cost-based query optimization:

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND

Plocation=‘Stafford’;

Suppose we have the information about the relations shown in Figure 19.8. The
LOW_VALUE and HIGH_VALUE statistics have been normalized for clarity. The tree
in Figure 19.4(a) is assumed to represent the result of the algebraic heuristic opti-
mization process and the start of cost-based optimization (in this example, we
assume that the heuristic optimizer does not push the projection operations down
the tree).

The first cost-based optimization to consider is join ordering. As previously men-
tioned, we assume the optimizer considers only left-deep trees, so the potential join
orders—without CARTESIAN PRODUCT—are:

1. PROJECT DEPARTMENT EMPLOYEE

2. DEPARTMENT PROJECT EMPLOYEE

3. DEPARTMENT EMPLOYEE PROJECT

4. EMPLOYEE DEPARTMENT PROJECT

Assume that the selection operation has already been applied to the PROJECT rela-
tion. If we assume a materialized approach, then a new temporary relation is 
created after each join operation. To examine the cost of join order (1), the first
join is between PROJECT and DEPARTMENT. Both the join method and the access
methods for the input relations must be determined. Since DEPARTMENT has no
index according to Figure 19.8, the only available access method is a table scan
(that is, a linear search). The PROJECT relation will have the selection operation
performed before the join, so two options exist: table scan (linear search) or utiliz-
ing its PROJ_PLOC index, so the optimizer must compare their estimated costs.
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Figure 19.8
Sample statistical information for relations in Q2. (a)
Column information. (b) Table information. (c) Index
information.

The statistical information on the PROJ_PLOC index (see Figure 19.8) shows the
number of index levels x = 2 (root plus leaf levels). The index is nonunique
(because Plocation is not a key of PROJECT), so the optimizer assumes a uniform
data distribution and estimates the number of record pointers for each Plocation
value to be 10. This is computed from the tables in Figure 19.8 by multiplying
Selectivity * Num_rows, where Selectivity is estimated by 1/Num_distinct. So the cost of
using the index and accessing the records is estimated to be 12 block accesses (2 for
the index and 10 for the data blocks). The cost of a table scan is estimated to be 100
block accesses, so the index access is more efficient as expected.

In the materialized approach, a temporary file TEMP1 of size 1 block is created to
hold the result of the selection operation. The file size is calculated by determining
the blocking factor using the formula Num_rows/Blocks, which gives 2000/100 or 20
rows per block. Hence, the 10 records selected from the PROJECT relation will fit
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into a single block. Now we can compute the estimated cost of the first join. We will
consider only the nested-loop join method, where the outer relation is the tempo-
rary file, TEMP1, and the inner relation is DEPARTMENT. Since the entire TEMP1 file
fits in the available buffer space, we need to read each of the DEPARTMENT table’s
five blocks only once, so the join cost is six block accesses plus the cost of writing the
temporary result file, TEMP2. The optimizer would have to determine the size of
TEMP2. Since the join attribute Dnumber is the key for DEPARTMENT, any Dnum
value from TEMP1 will join with at most one record from DEPARTMENT, so the
number of rows in TEMP2 will be equal to the number of rows in TEMP1, which is
10. The optimizer would determine the record size for TEMP2 and the number of
blocks needed to store these 10 rows. For brevity, assume that the blocking factor for
TEMP2 is five rows per block, so a total of two blocks are needed to store TEMP2.

Finally, the cost of the last join needs to be estimated. We can use a single-loop join
on TEMP2 since in this case the index EMP_SSN (see Figure 19.8) can be used to
probe and locate matching records from EMPLOYEE. Hence, the join method would
involve reading in each block of TEMP2 and looking up each of the five Mgr_ssn val-
ues using the EMP_SSN index. Each index lookup would require a root access, a leaf
access, and a data block access (x+1, where the number of levels x is 2). So, 10
lookups require 30 block accesses. Adding the two block accesses for TEMP2 gives a
total of 32 block accesses for this join.

For the final projection, assume pipelining is used to produce the final result, which
does not require additional block accesses, so the total cost for join order (1) is esti-
mated as the sum of the previous costs. The optimizer would then estimate costs in
a similar manner for the other three join orders and choose the one with the lowest
estimate. We leave this as an exercise for the reader.

19.9 Overview of Query Optimization 
in Oracle

The Oracle DBMS22 provides two different approaches to query optimization: rule-
based and cost-based. With the rule-based approach, the optimizer chooses execu-
tion plans based on heuristically ranked operations. Oracle maintains a table of 15
ranked access paths, where a lower ranking implies a more efficient approach. The
access paths range from table access by ROWID (the most efficient)—where ROWID
specifies the record’s physical address that includes the data file, data block, and row
offset within the block—to a full table scan (the least efficient)—where all rows in
the table are searched by doing multiblock reads. However, the rule-based approach
is being phased out in favor of the cost-based approach, where the optimizer exam-
ines alternative access paths and operator algorithms and chooses the execution
plan with the lowest estimated cost. The estimated query cost is proportional to the
expected elapsed time needed to execute the query with the given execution plan.

22The discussion in this section is primarily based on version 7 of Oracle. More optimization techniques
have been added to subsequent versions.
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The Oracle optimizer calculates this cost based on the estimated usage of resources,
such as I/O, CPU time, and memory needed. The goal of cost-based optimization in
Oracle is to minimize the elapsed time to process the entire query.

An interesting addition to the Oracle query optimizer is the capability for an appli-
cation developer to specify hints to the optimizer.23 The idea is that an application
developer might know more information about the data than the optimizer. For
example, consider the EMPLOYEE table shown in Figure 3.6. The Sex column of that
table has only two distinct values. If there are 10,000 employees, then the optimizer
would estimate that half are male and half are female, assuming a uniform data dis-
tribution. If a secondary index exists, it would more than likely not be used.
However, if the application developer knows that there are only 100 male employ-
ees, a hint could be specified in an SQL query whose WHERE-clause condition is Sex
= ‘M’ so that the associated index would be used in processing the query. Various
hints can be specified, such as:

■ The optimization approach for an SQL statement

■ The access path for a table accessed by the statement

■ The join order for a join statement

■ A particular join operation in a join statement

The cost-based optimization of Oracle 8 and later versions is a good example of the
sophisticated approach taken to optimize SQL queries in commercial RDBMSs.

19.10 Semantic Query Optimization
A different approach to query optimization, called semantic query optimization,
has been suggested. This technique, which may be used in combination with the
techniques discussed previously, uses constraints specified on the database
schema—such as unique attributes and other more complex constraints—in order
to modify one query into another query that is more efficient to execute. We will not
discuss this approach in detail but we will illustrate it with a simple example.
Consider the SQL query:

SELECT E.Lname, M.Lname
FROM EMPLOYEE AS E, EMPLOYEE AS M
WHERE E.Super_ssn=M.Ssn AND E.Salary > M.Salary

This query retrieves the names of employees who earn more than their supervisors.
Suppose that we had a constraint on the database schema that stated that no
employee can earn more than his or her direct supervisor. If the semantic query
optimizer checks for the existence of this constraint, it does not need to execute the
query at all because it knows that the result of the query will be empty. This may
save considerable time if the constraint checking can be done efficiently. However,
searching through many constraints to find those that are applicable to a given

23Such hints have also been called query annotations.
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query and that may semantically optimize it can also be quite time-consuming.
With the inclusion of active rules and additional metadata in database systems (see
Chapter 26), semantic query optimization techniques are being gradually  incorpo-
rated into the DBMSs.

19.11 Summary
In this chapter we gave an overview of the techniques used by DBMSs in processing
and optimizing high-level queries. We first discussed how SQL queries are trans-
lated into relational algebra and then how various relational algebra operations may
be executed by a DBMS. We saw that some operations, particularly SELECT and
JOIN, may have many execution options. We also discussed how operations can be
combined during query processing to create pipelined or stream-based execution
instead of materialized execution.

Following that, we described heuristic approaches to query optimization, which use
heuristic rules and algebraic techniques to improve the efficiency of query execu-
tion. We showed how a query tree that represents a relational algebra expression can
be heuristically optimized by reorganizing the tree nodes and transforming it 
into another equivalent query tree that is more efficient to execute. We also gave
equivalence-preserving transformation rules that may be applied to a query tree.
Then we introduced query execution plans for SQL queries, which add method exe-
cution plans to the query tree operations.

We discussed the cost-based approach to query optimization. We showed how cost
functions are developed for some database access algorithms and how these cost
functions are used to estimate the costs of different execution strategies. We pre-
sented an overview of the Oracle query optimizer, and we mentioned the technique
of semantic query optimization.

Review Questions
19.1. Discuss the reasons for converting SQL queries into relational algebra

queries before optimization is done.

19.2. Discuss the different algorithms for implementing each of the following
relational operators and the circumstances under which each algorithm can
be used: SELECT, JOIN, PROJECT, UNION, INTERSECT, SET DIFFERENCE,
CARTESIAN PRODUCT.

19.3. What is a query execution plan?

19.4. What is meant by the term heuristic optimization? Discuss the main heuris-
tics that are applied during query optimization.

19.5. How does a query tree represent a relational algebra expression? What is
meant by an execution of a query tree? Discuss the rules for transformation
of query trees and identify when each rule should be applied during opti-
mization.
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19.6. How many different join orders are there for a query that joins 10 relations?

19.7. What is meant by cost-based query optimization?

19.8. What is the difference between pipelining and materialization?

19.9. Discuss the cost components for a cost function that is used to estimate
query execution cost. Which cost components are used most often as the
basis for cost functions?

19.10. Discuss the different types of parameters that are used in cost functions.
Where is this information kept?

19.11. List the cost functions for the SELECT and JOIN methods discussed in
Section 19.8.

19.12. What is meant by semantic query optimization? How does it differ from
other query optimization techniques?

Exercises
19.13. Consider SQL queries Q1, Q8, Q1B, and Q4 in Chapter 4 and Q27 in

Chapter 5.

a. Draw at least two query trees that can represent each of these queries.
Under what circumstances would you use each of your query trees?

b. Draw the initial query tree for each of these queries, and then show how
the query tree is optimized by the algorithm outlined in Section 19.7.

c. For each query, compare your own query trees of part (a) and the initial
and final query trees of part (b).

19.14. A file of 4096 blocks is to be sorted with an available buffer space of 64
blocks. How many passes will be needed in the merge phase of the external
sort-merge algorithm?

19.15. Develop cost functions for the PROJECT, UNION, INTERSECTION, SET DIF-
FERENCE, and CARTESIAN PRODUCT algorithms discussed in Section 19.4.

19.16. Develop cost functions for an algorithm that consists of two SELECTs, a
JOIN, and a final PROJECT, in terms of the cost functions for the individual
operations.

19.17. Can a nondense index be used in the implementation of an aggregate opera-
tor? Why or why not?

19.18. Calculate the cost functions for different options of executing the JOIN oper-
ation OP7 discussed in Section 19.3.2.

19.19. Develop formulas for the hybrid hash-join algorithm for calculating the size
of the buffer for the first bucket. Develop more accurate cost estimation for-
mulas for the algorithm.
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19.20. Estimate the cost of operations OP6 and OP7, using the formulas developed
in Exercise 19.9.

19.21. Extend the sort-merge join algorithm to implement the LEFT OUTER JOIN
operation.

19.22. Compare the cost of two different query plans for the following query:

σSalary > 40000(EMPLOYEE Dno=DnumberDEPARTMENT)

Use the database statistics in Figure 19.8.
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Physical Database 
Design and Tuning

In the last chapter we discussed various techniques by
which queries can be processed efficiently by the

DBMS. These techniques are mostly internal to the DBMS and invisible to the pro-
grammer. In this chapter we discuss additional issues that affect the performance of
an application running on a DBMS. In particular, we discuss some of the options
available to database administrators and programmers for storing databases, and
some of the heuristics, rules, and techniques that they can use to tune the database
for performance improvement. First, in Section 20.1, we discuss the issues that arise
in physical database design dealing with storage and access of data. Then, in Section
20.2, we discuss how to improve database performance through tuning, indexing of
data, database design, and the queries themselves.

20.1 Physical Database Design 
in Relational Databases

In this section, we begin by discussing the physical design factors that affect the per-
formance of applications and transactions, and then we comment on the specific
guidelines for RDBMSs.

20.1.1 Factors That Influence Physical Database Design
Physical design is an activity where the goal is not only to create the appropriate
structuring of data in storage, but also to do so in a way that guarantees good per-
formance. For a given conceptual schema, there are many physical design alterna-
tives in a given DBMS. It is not possible to make meaningful physical design

20chapter 20
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decisions and performance analyses until the database designer knows the mix of
queries, transactions, and applications that are expected to run on the database.
This is called the job mix for the particular set of database system applications. The
database administrators/designers must analyze these applications, their expected
frequencies of invocation, any timing constraints on their execution speed, the
expected frequency of update operations, and any unique constraints on attributes.
We discuss each of these factors next.

A. Analyzing the Database Queries and Transactions. Before undertaking
the physical database design, we must have a good idea of the intended use of the
database by defining in a high-level form the queries and transactions that are
expected to run on the database. For each retrieval query, the following informa-
tion about the query would be needed:

1. The files that will be accessed by the query.1

2. The attributes on which any selection conditions for the query are specified.

3. Whether the selection condition is an equality, inequality, or a range condi-
tion.

4. The attributes on which any join conditions or conditions to link multiple
tables or objects for the query are specified.

5. The attributes whose values will be retrieved by the query.

The attributes listed in items 2 and 4 above are candidates for the definition of
access structures, such as indexes, hash keys, or sorting of the file.

For each update operation or update transaction, the following information
would be needed:

1. The files that will be updated.

2. The type of operation on each file (insert, update, or delete).

3. The attributes on which selection conditions for a delete or update are spec-
ified.

4. The attributes whose values will be changed by an update operation.

Again, the attributes listed in item 3 are candidates for access structures on the files,
because they would be used to locate the records that will be updated or deleted. On
the other hand, the attributes listed in item 4 are candidates for avoiding an access
structure, since modifying them will require updating the access structures.

B. Analyzing the Expected Frequency of Invocation of Queries and
Transactions. Besides identifying the characteristics of expected retrieval queries
and update transactions, we must consider their expected rates of invocation. This
frequency information, along with the attribute information collected on each
query and transaction, is used to compile a cumulative list of the expected fre-
quency of use for all queries and transactions. This is expressed as the expected fre-
quency of using each attribute in each file as a selection attribute or a join attribute,

1For simplicity we use the term files here, but this can also mean tables or relations.
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over all the queries and transactions. Generally, for large volumes of processing, the
informal 80–20 rule can be used: approximately 80 percent of the processing is
accounted for by only 20 percent of the queries and transactions. Therefore, in prac-
tical situations, it is rarely necessary to collect exhaustive statistics and invocation
rates on all the queries and transactions; it is sufficient to determine the 20 percent
or so most important ones.

C. Analyzing the Time Constraints of Queries and Transactions. Some
queries and transactions may have stringent performance constraints. For example,
a transaction may have the constraint that it should terminate within 5 seconds on
95 percent of the occasions when it is invoked, and that it should never take more
than 20 seconds. Such timing constraints place further priorities on the attributes
that are candidates for access paths. The selection attributes used by queries and
transactions with time constraints become higher-priority candidates for primary
access structures for the files, because the primary access structures are generally the
most efficient for locating records in a file.

D. Analyzing the Expected Frequencies of Update Operations. A minimum
number of access paths should be specified for a file that is frequently updated,
because updating the access paths themselves slows down the update operations. For
example, if a file that has frequent record insertions has 10 indexes on 10 different
attributes, each of these indexes must be updated whenever a new record is inserted.
The overhead for updating 10 indexes can slow down the insert operations.

E. Analyzing the Uniqueness Constraints on Attributes. Access paths should
be specified on all candidate key attributes—or sets of attributes—that are either the
primary key of a file or unique attributes. The existence of an index (or other access
path) makes it sufficient to only search the index when checking this uniqueness
constraint, since all values of the attribute will exist in the leaf nodes of the index.
For example, when inserting a new record, if a key attribute value of the new record
already exists in the index, the insertion of the new record should be rejected, since it
would violate the uniqueness constraint on the attribute.

Once the preceding information is compiled, it is possible to address the physical
database design decisions, which consist mainly of deciding on the storage struc-
tures and access paths for the database files.

20.1.2 Physical Database Design Decisions
Most relational systems represent each base relation as a physical database file. The
access path options include specifying the type of primary file organization for each
relation and the attributes of which indexes that should be defined. At most, one of
the indexes on each file may be a primary or a clustering index. Any number of
additional secondary indexes can be created.2

2The reader should review the various types of indexes described in Section 18.1. For a clearer under-
standing of this discussion, it is also helpful to be familiar with the algorithms for query processing dis-
cussed in Chapter 19.
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Design Decisions about Indexing. The attributes whose values are required in
equality or range conditions (selection operation) are those that are keys or that
participate in join conditions (join operation) requiring access paths, such as
indexes.

The performance of queries largely depends upon what indexes or hashing schemes
exist to expedite the processing of selections and joins. On the other hand, during
insert, delete, or update operations, the existence of indexes adds to the overhead.
This overhead must be justified in terms of the gain in efficiency by expediting
queries and transactions.

The physical design decisions for indexing fall into the following categories:

1. Whether to index an attribute. The general rules for creating an index on an
attribute are that the attribute must either be a key (unique), or there must
be some query that uses that attribute either in a selection condition (equal-
ity or range of values) or in a join condition. One reason for creating multi-
ple indexes is that some operations can be processed by just scanning the
indexes, without having to access the actual data file (see Section 19.5).

2. What attribute or attributes to index on. An index can be constructed on a
single attribute, or on more than one attribute if it is a composite index. If
multiple attributes from one relation are involved together in several queries,
(for example, (Garment_style_#, Color) in a garment inventory database), a
multiattribute (composite) index is warranted. The ordering of attributes
within a multiattribute index must correspond to the queries. For instance,
the above index assumes that queries would be based on an ordering of col-
ors within a Garment_style_# rather than vice versa.

3. Whether to set up a clustered index. At most, one index per table can be a
primary or clustering index, because this implies that the file be physically
ordered on that attribute. In most RDBMSs, this is specified by the keyword
CLUSTER. (If the attribute is a key, a primary index is created, whereas a
clustering index is created if the attribute is not a key—see Section 18.1.) If a
table requires several indexes, the decision about which one should be the
primary or clustering index depends upon whether keeping the table
ordered on that attribute is needed. Range queries benefit a great deal from
clustering. If several attributes require range queries, relative benefits must
be evaluated before deciding which attribute to cluster on. If a query is to be
answered by doing an index search only (without retrieving data records),
the corresponding index should not be clustered, since the main benefit of
clustering is achieved when retrieving the records themselves. A clustering
index may be set up as a multiattribute index if range retrieval by that com-
posite key is useful in report creation (for example, an index on Zip_code,
Store_id, and Product_id may be a clustering index for sales data).

4. Whether to use a hash index over a tree index. In general, RDBMSs use B+-
trees for indexing. However, ISAM and hash indexes are also provided in
some systems (see Chapter 18). B+-trees support both equality and range
queries on the attribute used as the search key. Hash indexes work well with
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equality conditions, particularly during joins to find a matching record(s),
but they do not support range queries.

5. Whether to use dynamic hashing for the file. For files that are very
volatile—that is, those that grow and shrink continuously—one of the
dynamic hashing schemes discussed in Section 17.9 would be suitable.
Currently, they are not offered by many commercial RDBMSs.

How to Create an Index. Many RDBMSs have a similar type of command for
creating an index, although it is not part of the SQL standard. The general form of
this command is:

CREATE [ UNIQUE ] INDEX <index name>
ON <table name> ( <column name> [ <order> ] { , <column name> [ <order> ] } )
[ CLUSTER ] ;

The keywords UNIQUE and CLUSTER are optional. The keyword CLUSTER is used
when the index to be created should also sort the data file records on the indexing
attribute. Thus, specifying CLUSTER on a key (unique) attribute would create some
variation of a primary index, whereas specifying CLUSTER on a nonkey
(nonunique) attribute would create some variation of a clustering index. The value
for <order> can be either ASC (ascending) or DESC (descending), and specifies
whether the data file should be ordered in ascending or descending values of the
indexing attribute. The default is ASC. For example, the following would create a
clustering (ascending) index on the nonkey attribute Dno of the EMPLOYEE file:

CREATE INDEX DnoIndex
ON EMPLOYEE (Dno)
CLUSTER ;

Denormalization as a Design Decision for Speeding Up Queries. The ulti-
mate goal during normalization (see Chapters 15 and 16) is to separate attributes
into tables to minimize redundancy, and thereby avoid the update anomalies that
lead to an extra processing overhead to maintain consistency in the database. The
ideals that are typically followed are the third or Boyce-Codd normal forms (see
Chapter 15).

The above ideals are sometimes sacrificed in favor of faster execution of frequently
occurring queries and transactions. This process of storing the logical database
design (which may be in BCNF or 4NF) in a weaker normal form, say 2NF or 1NF,
is called denormalization. Typically, the designer includes certain attributes from a
table S into another table R. The reason is that the attributes from S that are
included in R are frequently needed—along with other attributes in R—for answer-
ing queries or producing reports. By including these attributes, a join of R with S is
avoided for these frequently occurring queries and reports. This reintroduces
redundancy in the base tables by including the same attributes in both tables R and
S. A partial functional dependency or a transitive dependency now exists in the table
R, thereby creating the associated redundancy problems (see Chapter 15). A tradeoff
exists between the additional updating needed for maintaining consistency of
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redundant attributes versus the effort needed to perform a join to incorporate the
additional attributes needed in the result. For example, consider the following rela-
tion:

ASSIGN (Emp_id, Proj_id, Emp_name, Emp_job_title, Percent_assigned, Proj_name,
Proj_mgr_id, Proj_mgr_name),

which corresponds exactly to the headers in a report called The Employee
Assignment Roster.

This relation is only in 1NF because of the following functional dependencies:

Proj_id → Proj_name, Proj_mgr_id
Proj_mgr_id → Proj_mgr_name
Emp_id → Emp_name, Emp_job_title

This relation may be preferred over the design in 2NF (and 3NF) consisting of the
following three relations:

EMP (Emp_id, Emp_name, Emp_job_title)
PROJ (Proj_id, Proj_name, Proj_mgr_id)
EMP_PROJ (Emp_id, Proj_id, Percent_assigned)

This is because to produce the The Employee Assignment Roster report (with all
fields shown in ASSIGN above), the latter multirelation design requires two
NATURAL JOIN (indicated with *) operations (between EMP and EMP_PROJ, and
between PROJ and EMP_PROJ), plus a final JOIN between PROJ and EMP to retrieve
the Proj_mgr_name from the Proj_mgr_id. Thus the following JOINs would be needed
(the final join would also require renaming (aliasing) of the last EMP table, which is
not shown):

((EMP_PROJ * EMP) * PROJ) PROJ.Proj_mgr_id = EMP.Emp_id EMP

It is also possible to create a view for the ASSIGN table. This does not mean that the
join operations will be avoided, but that the user need not specify the joins. If the
view table is materialized, the joins would be avoided, but if the virtual view table is
not stored as a materialized file, the join computations would still be necessary.
Other forms of denormalization consist of storing extra tables to maintain original
functional dependencies that are lost during BCNF decomposition. For example,
Figure 15.14 shows the TEACH(Student, Course, Instructor) relation with the func-
tional dependencies {{Student, Course} → Instructor, Instructor → Course}. A lossless
decomposition of TEACH into T1(Student, Instructor) and T2(Instructor, Course) does
not allow queries of the form what course did student Smith take from instructor
Navathe to be answered without joining T1 and T2. Therefore, storing T1, T2, and
TEACH may be a possible solution, which reduces the design from BCNF to 3NF.
Here, TEACH is a materialized join of the other two tables, representing an extreme
redundancy. Any updates to T1 and T2 would have to be applied to TEACH. An alter-
nate strategy is to create T1 and T2 as updatable base tables, and to create TEACH as
a view (virtual table) on T1 and T2 that can only be queried.
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20.2 An Overview of Database Tuning 
in Relational Systems

After a database is deployed and is in operation, actual use of the applications, trans-
actions, queries, and views reveals factors and problem areas that may not have been
accounted for during the initial physical design. The inputs to physical design listed
in Section 20.1.1 can be revised by gathering actual statistics about usage patterns.
Resource utilization as well as internal DBMS processing—such as query optimiza-
tion—can be monitored to reveal bottlenecks, such as contention for the same data
or devices. Volumes of activity and sizes of data can be better estimated. Therefore, it
is necessary to monitor and revise the physical database design constantly—an activ-
ity referred to as database tuning. The goals of tuning are as follows:

■ To make applications run faster.

■ To improve (lower) the response time of queries and transactions.

■ To improve the overall throughput of transactions.

The dividing line between physical design and tuning is very thin. The same design
decisions that we discussed in Section 20.1.2 are revisited during database tuning,
which is a continual adjustment of the physical design. We give a brief overview of
the tuning process below.3 The inputs to the tuning process include statistics related
to the same factors mentioned in Section 20.1.1. In particular, DBMSs can internally
collect the following statistics:

■ Sizes of individual tables.

■ Number of distinct values in a column.

■ The number of times a particular query or transaction is submitted and exe-
cuted in an interval of time.

■ The times required for different phases of query and transaction processing
(for a given set of queries or transactions).

These and other statistics create a profile of the contents and use of the database.
Other information obtained from monitoring the database system activities and
processes includes the following:

■ Storage statistics. Data about allocation of storage into tablespaces, index-
spaces, and buffer pools.

■ I/O and device performance statistics. Total read/write activity (paging) on
disk extents and disk hot spots.

■ Query/transaction processing statistics. Execution times of queries and
transactions, and optimization times during query optimization.

3Interested readers should consult Shasha and Bonnet (2002) for a detailed discussion of tuning.
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■ Locking/logging related statistics. Rates of issuing different types of locks,
transaction throughput rates, and log records activity.4

■ Index statistics. Number of levels in an index, number of noncontiguous
leaf pages, and so on.

Some of the above statistics relate to transactions, concurrency control, and recov-
ery, which are discussed in Chapters 21 through 23. Tuning a database involves deal-
ing with the following types of problems:

■ How to avoid excessive lock contention, thereby increasing concurrency
among transactions.

■ How to minimize the overhead of logging and unnecessary dumping of data.

■ How to optimize the buffer size and scheduling of processes.

■ How to allocate resources such as disks, RAM, and processes for most effi-
cient utilization.

Most of the previously mentioned problems can be solved by the DBA by setting
appropriate physical DBMS parameters, changing configurations of devices, chang-
ing operating system parameters, and other similar activities. The solutions tend to
be closely tied to specific systems. The DBAs are typically trained to handle these
tuning problems for the specific DBMS. We briefly discuss the tuning of various
physical database design decisions below.

20.2.1 Tuning Indexes
The initial choice of indexes may have to be revised for the following reasons:

■ Certain queries may take too long to run for lack of an index.

■ Certain indexes may not get utilized at all.

■ Certain indexes may undergo too much updating because the index is on an
attribute that undergoes frequent changes.

Most DBMSs have a command or trace facility, which can be used by the DBA to ask
the system to show how a query was executed—what operations were performed in
what order and what secondary access structures (indexes) were used. By analyzing
these execution plans, it is possible to diagnose the causes of the above problems.
Some indexes may be dropped and some new indexes may be created based on the
tuning analysis.

The goal of tuning is to dynamically evaluate the requirements, which sometimes
fluctuate seasonally or during different times of the month or week, and to reorgan-
ize the indexes and file organizations to yield the best overall performance.
Dropping and building new indexes is an overhead that can be justified in terms of
performance improvements. Updating of a table is generally suspended while an

4The reader should preview Chapters 21–23 for an explanation of these terms.
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index is dropped or created; this loss of service must be accounted for. Besides drop-
ping or creating indexes and changing from a nonclustered to a clustered index and
vice versa, rebuilding the index may improve performance. Most RDBMSs use 
B+-trees for an index. If there are many deletions on the index key, index pages may
contain wasted space, which can be claimed during a rebuild operation. Similarly,
too many insertions may cause overflows in a clustered index that affect perfor-
mance. Rebuilding a clustered index amounts to reorganizing the entire table
ordered on that key.

The available options for indexing and the way they are defined, created, and reor-
ganized varies from system to system. As an illustration, consider the sparse and
dense indexes in Chapter 18. A sparse index such as a primary index (see Section
18.1) will have one index pointer for each page (disk block) in the data file; a dense
index such as a unique secondary index will have an index pointer for each record.
Sybase provides clustering indexes as sparse indexes in the form of B+-trees, whereas
INGRES provides sparse clustering indexes as ISAM files and dense clustering
indexes as B+-trees. In some versions of Oracle and DB2, the option of setting up a
clustering index is limited to a dense index (with many more index entries), and the
DBA has to work with this limitation.

20.2.2 Tuning the Database Design
In Section 20.1.2, we discussed the need for a possible denormalization, which is a
departure from keeping all tables as BCNF relations. If a given physical database
design does not meet the expected objectives, the DBA may revert to the logical
database design, make adjustments such as denormalizations to the logical schema,
and remap it to a new set of physical tables and indexes.

As discussed, the entire database design has to be driven by the processing require-
ments as much as by data requirements. If the processing requirements are dynam-
ically changing, the design needs to respond by making changes to the conceptual
schema if necessary and to reflect those changes into the logical schema and physi-
cal design. These changes may be of the following nature:

■ Existing tables may be joined (denormalized) because certain attributes
from two or more tables are frequently needed together: This reduces the
normalization level from BCNF to 3NF, 2NF, or 1NF.5

■ For the given set of tables, there may be alternative design choices, all of
which achieve 3NF or BCNF. We illustrated alternative equivalent designs in
Chapter 16. One normalized design may be replaced by another.

■ A relation of the form R(K,A, B, C, D, ...)—with K as a set of key attributes—
that is in BCNF can be stored in multiple tables that are also in BCNF—for
example, R1(K, A, B), R2(K, C, D, ), R3(K, ...)—by replicating the key K in each
table. Such a process is known as vertical partitioning. Each table groups

5Note that 3NF and 2NF address different types of problem dependencies that are independent of
each other; hence, the normalization (or denormalization) order between them is arbitrary.
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sets of attributes that are accessed together. For example, the table
EMPLOYEE(Ssn, Name, Phone, Grade, Salary) may be split into two tables:
EMP1(Ssn, Name, Phone) and EMP2(Ssn, Grade, Salary). If the original table
has a large number of rows (say 100,000) and queries about phone numbers
and salary information are totally distinct and occur with very different fre-
quencies, then this separation of tables may work better.

■ Attribute(s) from one table may be repeated in another even though this cre-
ates redundancy and a potential anomaly. For example, Part_name may be
replicated in tables wherever the Part# appears (as foreign key), but there
may be one master table called PART_MASTER(Part#, Part_name, ...) where
the Partname is guaranteed to be up-to-date.

■ Just as vertical partitioning splits a table vertically into multiple tables,
horizontal partitioning takes horizontal slices of a table and stores them as
distinct tables. For example, product sales data may be separated into ten
tables based on ten product lines. Each table has the same set of columns
(attributes) but contains a distinct set of products (tuples). If a query or
transaction applies to all product data, it may have to run against all the
tables and the results may have to be combined.

These types of adjustments designed to meet the high volume of queries or transac-
tions, with or without sacrificing the normal forms, are commonplace in practice.

20.2.3 Tuning Queries
We already discussed how query performance is dependent upon the appropriate
selection of indexes, and how indexes may have to be tuned after analyzing queries
that give poor performance by using the commands in the RDBMS that show the
execution plan of the query. There are mainly two indications that suggest that
query tuning may be needed:

1. A query issues too many disk accesses (for example, an exact match query
scans an entire table).

2. The query plan shows that relevant indexes are not being used.

Some typical instances of situations prompting query tuning include the following:

1. Many query optimizers do not use indexes in the presence of arithmetic
expressions (such as Salary/365 > 10.50), numerical comparisons of attrib-
utes of different sizes and precision (such as Aqty = Bqty where Aqty is of type
INTEGER and Bqty is of type SMALLINTEGER), NULL comparisons (such as
Bdate IS NULL), and substring comparisons (such as Lname LIKE ‘%mann’).

2. Indexes are often not used for nested queries using IN; for example, the fol-
lowing query:

SELECT Ssn FROM EMPLOYEE
WHERE Dno IN ( SELECT Dnumber FROM DEPARTMENT

WHERE Mgr_ssn = ‘333445555’ );
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may not use the index on Dno in EMPLOYEE, whereas using Dno = Dnumber
in the WHERE-clause with a single block query may cause the index to be
used.

3. Some DISTINCTs may be redundant and can be avoided without changing
the result. A DISTINCT often causes a sort operation and must be avoided as
much as possible.

4. Unnecessary use of temporary result tables can be avoided by collapsing
multiple queries into a single query unless the temporary relation is needed
for some intermediate processing.

5. In some situations involving the use of correlated queries, temporaries are
useful. Consider the following query, which retrieves the highest paid
employee in each department:

SELECT Ssn
FROM EMPLOYEE E
WHERE Salary = SELECT MAX (Salary)

FROM EMPLOYEE AS M
WHERE M.Dno = E.Dno;

This has the potential danger of searching all of the inner EMPLOYEE table M
for each tuple from the outer EMPLOYEE table E. To make the execution
more efficient, the process can be broken into two queries, where the first
query just computes the maximum salary in each department as follows:

SELECT MAX (Salary) AS High_salary, Dno INTO TEMP
FROM EMPLOYEE
GROUP BY Dno;
SELECT EMPLOYEE.Ssn
FROM EMPLOYEE, TEMP
WHERE EMPLOYEE.Salary = TEMP.High_salary 

AND EMPLOYEE.Dno = TEMP.Dno;

6. If multiple options for a join condition are possible, choose one that uses a
clustering index and avoid those that contain string comparisons. For exam-
ple, assuming that the Name attribute is a candidate key in EMPLOYEE and
STUDENT, it is better to use EMPLOYEE.Ssn = STUDENT.Ssn as a join condi-
tion rather than EMPLOYEE.Name = STUDENT.Name if Ssn has a clustering
index in one or both tables.

7. One idiosyncrasy with some query optimizers is that the order of tables in
the FROM-clause may affect the join processing. If that is the case, one may
have to switch this order so that the smaller of the two relations is scanned
and the larger relation is used with an appropriate index.

8. Some query optimizers perform worse on nested queries compared to their
equivalent unnested counterparts. There are four types of nested queries:

■ Uncorrelated subqueries with aggregates in an inner query.

■ Uncorrelated subqueries without aggregates.

■ Correlated subqueries with aggregates in an inner query.
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■ Correlated subqueries without aggregates.

Of the four types above, the first one typically presents no problem, since
most query optimizers evaluate the inner query once. However, for a query
of the second type, such as the example in item 2, most query optimizers
may not use an index on Dno in EMPLOYEE. However, the same optimizers
may do so if the query is written as an unnested query. Transformation of
correlated subqueries may involve setting temporary tables. Detailed exam-
ples are outside our scope here.6

9. Finally, many applications are based on views that define the data of interest
to those applications. Sometimes, these views become overkill, because a
query may be posed directly against a base table, rather than going through a
view that is defined by a JOIN.

20.2.4 Additional Query Tuning Guidelines
Additional techniques for improving queries apply in certain situations as follows:

1. A query with multiple selection conditions that are connected via OR may
not be prompting the query optimizer to use any index. Such a query may be
split up and expressed as a union of queries, each with a condition on an
attribute that causes an index to be used. For example,

SELECT Fname, Lname, Salary, Age7

FROM EMPLOYEE
WHERE Age > 45 OR Salary < 50000;

may be executed using sequential scan giving poor performance. Splitting it
up as

SELECT Fname, Lname, Salary, Age
FROM EMPLOYEE
WHERE Age > 45
UNION
SELECT Fname, Lname, Salary, Age
FROM EMPLOYEE
WHERE Salary < 50000;

may utilize indexes on Age as well as on Salary.

2. To help expedite a query, the following transformations may be tried:

■ NOT condition may be transformed into a positive expression.

■ Embedded SELECT blocks using IN, = ALL, = ANY, and = SOME may be
replaced by joins.

■ If an equality join is set up between two tables, the range predicate (selec-
tion condition) on the joining attribute set up in one table may be
repeated for the other table.

6For further details, see Shasha and Bonnet (2002).
7We modified the schema and used Age in EMPLOYEE instead of Bdate.
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3. WHERE conditions may be rewritten to utilize the indexes on multiple
columns. For example,

SELECT Region#, Prod_type, Month, Sales
FROM SALES_STATISTICS
WHERE Region# = 3 AND ((Prod_type BETWEEN 1 AND 3) OR (Prod_type

BETWEEN 8 AND 10));

may use an index only on Region# and search through all leaf pages of the
index for a match on Prod_type. Instead, using

SELECT Region#, Prod_type, Month, Sales
FROM SALES_STATISTICS
WHERE (Region# = 3 AND (Prod_type BETWEEN 1 AND 3))

OR (Region# = 3 AND (Prod_type BETWEEN 8 AND 10));

may use a composite index on (Region#, Prod_type) and work much more
efficiently.

In this section, we have covered many of the common instances where the ineffi-
ciency of a query may be fixed by some simple corrective action such as using a tem-
porary table, avoiding certain types of query constructs, or avoiding the use of
views. The goal is to have the RDBMS use existing single attribute or composite
attribute indexes as much as possible. This avoids full scans of data blocks or entire
scanning of index leaf nodes. Redundant processes like sorting must be avoided at
any cost. The problems and the remedies will depend upon the workings of a query
optimizer within an RDBMS. Detailed literature exists in database tuning guidelines
for database administration by the RDBMS vendors. Major relational DBMS ven-
dors like Oracle, IBM and Microsoft encourage their large customers to share ideas
of tuning at the annual expos and other forums so that the entire industry benefits
by using performance enhancement techniques. These techniques are typically
available in trade literature and on various Web sites.

20.3 Summary
In this chapter, we discussed the factors that affect physical database design deci-
sions and provided guidelines for choosing among physical design alternatives. We
discussed changes to logical design such as denormalization, as well as modifica-
tions of indexes, and changes to queries to illustrate different techniques for data-
base performance tuning. These are only a representative sample of a large number
of measures and techniques adopted in the design of large commercial applications
of relational DBMSs.

Review Questions
20.1. What are the important factors that influence physical database design?

20.2. Discuss the decisions made during physical database design.

20.3. Discuss the guidelines for physical database design in RDBMSs.
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20.4. Discuss the types of modifications that may be applied to the logical data-
base design of a relational database.

20.5. Under what situations would denormalization of a database schema be
used? Give examples of denormalization.

20.6. Discuss the tuning of indexes for relational databases.

20.7. Discuss the considerations for reevaluating and modifying SQL queries.

20.8. Illustrate the types of changes to SQL queries that may be worth considering
for improving the performance during database tuning.
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Introduction to Transaction
Processing Concepts 

and Theory

The concept of transaction provides a mechanism
for describing logical units of database processing.

Transaction processing systems are systems with large databases and hundreds of
concurrent users executing database transactions. Examples of such systems include
airline reservations, banking, credit card processing, online retail purchasing, stock
markets, supermarket checkouts, and many other applications. These systems
require high availability and fast response time for hundreds of concurrent users. In
this chapter we present the concepts that are needed in transaction processing sys-
tems. We define the concept of a transaction, which is used to represent a logical
unit of database processing that must be completed in its entirety to ensure correct-
ness. A transaction is typically implemented by a computer program, which
includes database commands such as retrievals, insertions, deletions, and updates.
We introduced some of the basic techniques for database programming in Chapters
13 and 14.

In this chapter, we focus on the basic concepts and theory that are needed to ensure
the correct executions of transactions. We discuss the concurrency control problem,
which occurs when multiple transactions submitted by various users interfere with
one another in a way that produces incorrect results. We also discuss the problems
that can occur when transactions fail, and how the database system can recover
from various types of failures.

This chapter is organized as follows. Section 21.1 informally discusses why concur-
rency control and recovery are necessary in a database system. Section 21.2 defines
the term transaction and discusses additional concepts related to transaction pro-
cessing in database systems. Section 21.3 presents the important properties of atom-
icity, consistency preservation, isolation, and durability or permanency—called the

21chapter 21
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ACID properties—that are considered desirable in transaction processing systems.
Section 21.4 introduces the concept of schedules (or histories) of executing transac-
tions and characterizes the recoverability of schedules. Section 21.5 discusses the
notion of serializability of concurrent transaction execution, which can be used to
define correct execution sequences (or schedules) of concurrent transactions. In
Section 21.6, we present some of the commands that support the transaction con-
cept in SQL. Section 21.7 summarizes the chapter.

The two following chapters continue with more details on the actual methods and
techniques used to support transaction processing. Chapter 22 gives an overview 
of the basic concurrency control protocols and Chapter 23 introduces recovery 
techniques.

21.1 Introduction to Transaction Processing
In this section we discuss the concepts of concurrent execution of transactions and
recovery from transaction failures. Section 21.1.1 compares single-user and multi-
user database systems and demonstrates how concurrent execution of transactions
can take place in multiuser systems. Section 21.1.2 defines the concept of transac-
tion and presents a simple model of transaction execution based on read and write
database operations. This model is used as the basis for defining and formalizing
concurrency control and recovery concepts. Section 21.1.3 uses informal examples
to show why concurrency control techniques are needed in multiuser systems.
Finally, Section 21.1.4 discusses why techniques are needed to handle recovery from
system and transaction failures by discussing the different ways in which transac-
tions can fail while executing.

21.1.1 Single-User versus Multiuser Systems
One criterion for classifying a database system is according to the number of users
who can use the system concurrently. A DBMS is single-user if at most one user at
a time can use the system, and it is multiuser if many users can use the system—and
hence access the database—concurrently. Single-user DBMSs are mostly restricted
to personal computer systems; most other DBMSs are multiuser. For example, an
airline reservations system is used by hundreds of travel agents and reservation
clerks concurrently. Database systems used in banks, insurance agencies, stock
exchanges, supermarkets, and many other applications are multiuser systems. In
these systems, hundreds or thousands of users are typically operating on the data-
base by submitting transactions concurrently to the system.

Multiple users can access databases—and use computer systems—simultaneously
because of the concept of multiprogramming, which allows the operating system
of the computer to execute multiple programs—or processes—at the same time. A
single central processing unit (CPU) can only execute at most one process at a time.
However, multiprogramming operating systems execute some commands from
one process, then suspend that process and execute some commands from the next
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Figure 21.1
Interleaved process-
ing versus parallel
processing of con-
current transactions.

process, and so on. A process is resumed at the point where it was suspended when-
ever it gets its turn to use the CPU again. Hence, concurrent execution of processes
is actually interleaved, as illustrated in Figure 21.1, which shows two processes, A
and B, executing concurrently in an interleaved fashion. Interleaving keeps the CPU
busy when a process requires an input or output (I/O) operation, such as reading a
block from disk. The CPU is switched to execute another process rather than
remaining idle during I/O time. Interleaving also prevents a long process from
delaying other processes.

If the computer system has multiple hardware processors (CPUs), parallel process-
ing of multiple processes is possible, as illustrated by processes C and D in Figure
21.1. Most of the theory concerning concurrency control in databases is developed in
terms of interleaved concurrency, so for the remainder of this chapter we assume
this model. In a multiuser DBMS, the stored data items are the primary resources
that may be accessed concurrently by interactive users or application programs,
which are constantly retrieving information from and modifying the database.

21.1.2 Transactions, Database Items, Read 
and Write Operations, and DBMS Buffers

A transaction is an executing program that forms a logical unit of database process-
ing. A transaction includes one or more database access operations—these can
include insertion, deletion, modification, or retrieval operations. The database
operations that form a transaction can either be embedded within an application
program or they can be specified interactively via a high-level query language such
as SQL. One way of specifying the transaction boundaries is by specifying explicit
begin transaction and end transaction statements in an application program; in
this case, all database access operations between the two are considered as forming
one transaction. A single application program may contain more than one transac-
tion if it contains several transaction boundaries. If the database operations in a
transaction do not update the database but only retrieve data, the transaction is
called a read-only transaction; otherwise it is known as a read-write transaction.
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The database model that is used to present transaction processing concepts is quite
simple when compared to the data models that we discussed earlier in the book,
such as the relational model or the object model. A database is basically represented
as a collection of named data items. The size of a data item is called its granularity.
A data item can be a database record, but it can also be a larger unit such as a whole
disk block, or even a smaller unit such as an individual field (attribute) value of some
record in the database. The transaction processing concepts we discuss are inde-
pendent of the data item granularity (size) and apply to data items in general. Each
data item has a unique name, but this name is not typically used by the programmer;
rather, it is just a means to uniquely identify each data item. For example, if the data
item granularity is one disk block, then the disk block address can be used as the
data item name. Using this simplified database model, the basic database access
operations that a transaction can include are as follows:

■ read_item(X). Reads a database item named X into a program variable. To
simplify our notation, we assume that the program variable is also named X.

■ write_item(X). Writes the value of program variable X into the database
item named X.

As we discussed in Chapter 17, the basic unit of data transfer from disk to main
memory is one block. Executing a read_item(X) command includes the following
steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that disk block is not
already in some main memory buffer).

3. Copy item X from the buffer to the program variable named X.

Executing a write_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that disk block is not
already in some main memory buffer).

3. Copy item X from the program variable named X into its correct location in
the buffer.

4. Store the updated block from the buffer back to disk (either immediately or
at some later point in time).

It is step 4 that actually updates the database on disk. In some cases the buffer is not
immediately stored to disk, in case additional changes are to be made to the buffer.
Usually, the decision about when to store a modified disk block whose contents are
in a main memory buffer is handled by the recovery manager of the DBMS in coop-
eration with the underlying operating system. The DBMS will maintain in the
database cache a number of data buffers in main memory. Each buffer typically
holds the contents of one database disk block, which contains some of the database
items being processed. When these buffers are all occupied, and additional database
disk blocks must be copied into memory, some buffer replacement policy is used to
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(a)

read_item(X );
X := X – N;
write_item(X );
read_item(Y );
Y := Y + N;
write_item(Y );

(b)

read_item(X );
X := X + M;
write_item(X );

T1 T2
Figure 21.2
Two sample transac-
tions. (a) Transaction
T1. (b) Transaction T2.

choose which of the current buffers is to be replaced. If the chosen buffer has been
modified, it must be written back to disk before it is reused.1

A transaction includes read_item and write_item operations to access and update the
database. Figure 21.2 shows examples of two very simple transactions. The read-set
of a transaction is the set of all items that the transaction reads, and the write-set is
the set of all items that the transaction writes. For example, the read-set of T1 in
Figure 21.2 is {X, Y} and its write-set is also {X, Y}.

Concurrency control and recovery mechanisms are mainly concerned with the
database commands in a transaction. Transactions submitted by the various users
may execute concurrently and may access and update the same database items. If
this concurrent execution is uncontrolled, it may lead to problems, such as an incon-
sistent database. In the next section we informally introduce some of the problems
that may occur.

21.1.3 Why Concurrency Control Is Needed
Several problems can occur when concurrent transactions execute in an uncon-
trolled manner. We illustrate some of these problems by referring to a much simpli-
fied airline reservations database in which a record is stored for each airline flight.
Each record includes the number of reserved seats on that flight as a named (uniquely
identifiable) data item, among other information. Figure 21.2(a) shows a transac-
tion T1 that transfers N reservations from one flight whose number of reserved seats
is stored in the database item named X to another flight whose number of reserved
seats is stored in the database item named Y. Figure 21.2(b) shows a simpler trans-
action T2 that just reserves M seats on the first flight (X) referenced in transaction
T1.2 To simplify our example, we do not show additional portions of the transac-
tions, such as checking whether a flight has enough seats available before reserving
additional seats.

1We will not discuss buffer replacement policies here because they are typically discussed in operating
systems textbooks.
2A similar, more commonly used example assumes a bank database, with one transaction doing a trans-
fer of funds from account X to account Y and the other transaction doing a deposit to account X.
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When a database access program is written, it has the flight number, flight date, and
the number of seats to be booked as parameters; hence, the same program can be
used to execute many different transactions, each with a different flight number,
date, and number of seats to be booked. For concurrency control purposes, a trans-
action is a particular execution of a program on a specific date, flight, and number of
seats. In Figure 21.2(a) and (b), the transactions T1 and T2 are specific executions of
the programs that refer to the specific flights whose numbers of seats are stored in
data items X and Y in the database. Next we discuss the types of problems we may
encounter with these two simple transactions if they run concurrently.

The Lost Update Problem. This problem occurs when two transactions that
access the same database items have their operations interleaved in a way that makes
the value of some database items incorrect. Suppose that transactions T1 and T2 are
submitted at approximately the same time, and suppose that their operations are
interleaved as shown in Figure 21.3(a); then the final value of item X is incorrect
because T2 reads the value of X before T1 changes it in the database, and hence the
updated value resulting from T1 is lost. For example, if X = 80 at the start (originally
there were 80 reservations on the flight), N = 5 (T1 transfers 5 seat reservations from
the flight corresponding to X to the flight corresponding to Y), and M = 4 (T2
reserves 4 seats on X), the final result should be X = 79. However, in the interleaving
of operations shown in Figure 21.3(a), it is X = 84 because the update in T1 that
removed the five seats from X was lost.

The Temporary Update (or Dirty Read) Problem. This problem occurs when
one transaction updates a database item and then the transaction fails for some rea-
son (see Section 21.1.4). Meanwhile, the updated item is accessed (read) by another
transaction before it is changed back to its original value. Figure 21.3(b) shows an
example where T1 updates item X and then fails before completion, so the system
must change X back to its original value. Before it can do so, however, transaction T2
reads the temporary value of X, which will not be recorded permanently in the data-
base because of the failure of T1. The value of item X that is read by T2 is called dirty
data because it has been created by a transaction that has not completed and com-
mitted yet; hence, this problem is also known as the dirty read problem.

The Incorrect Summary Problem. If one transaction is calculating an aggregate
summary function on a number of database items while other transactions are
updating some of these items, the aggregate function may calculate some values
before they are updated and others after they are updated. For example, suppose
that a transaction T3 is calculating the total number of reservations on all the flights;
meanwhile, transaction T1 is executing. If the interleaving of operations shown in
Figure 21.3(c) occurs, the result of T3 will be off by an amount N because T3 reads
the value of X after N seats have been subtracted from it but reads the value of Y
before those N seats have been added to it.
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(a)

read_item(X );
X := X – N;

write_item(X );
read_item(Y );

read_item(X );
X := X + M;

write_item(X );

Time

Item X has an incorrect value because
its update by T1 is lost (overwritten).

Y := Y + N;
write_item(Y );

(b)

read_item(X );
X := X – N;
write_item(X );

read_item(X );
X := X + M;
write_item(X );

Time

Transaction T1 fails and must change
the value of X back to its old value;
meanwhile T2 has read the temporary
incorrect value of X.

read_item(Y );

T1

T1

(c)

read_item(X );
X := X – N;
write_item(X );

read_item(Y );
Y := Y + N;
write_item(Y );

read_item(X );
sum := sum + X;
read_item(Y );
sum := sum + Y;

T3 reads X after N is subtracted and reads
Y before N is added; a wrong summary
is the result (off by N ).

T3

T2

sum := 0;
read_item(A);
sum := sum + A;

T1 T2
Figure 21.3
Some problems that occur when concurrent
execution is uncontrolled. (a) The lost update
problem. (b) The temporary update problem.
(c) The incorrect summary problem.
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The Unrepeatable Read Problem. Another problem that may occur is called
unrepeatable read, where a transaction T reads the same item twice and the item is
changed by another transaction T� between the two reads. Hence, T receives
different values for its two reads of the same item. This may occur, for example, if
during an airline reservation transaction, a customer inquires about seat availability
on several flights. When the customer decides on a particular flight, the transaction
then reads the number of seats on that flight a second time before completing the
reservation, and it may end up reading a different value for the item.

21.1.4 Why Recovery Is Needed
Whenever a transaction is submitted to a DBMS for execution, the system is respon-
sible for making sure that either all the operations in the transaction are completed
successfully and their effect is recorded permanently in the database, or that the
transaction does not have any effect on the database or any other transactions. In
the first case, the transaction is said to be committed, whereas in the second case,
the transaction is aborted. The DBMS must not permit some operations of a trans-
action T to be applied to the database while other operations of T are not, because
the whole transaction is a logical unit of database processing. If a transaction fails
after executing some of its operations but before executing all of them, the opera-
tions already executed must be undone and have no lasting effect.

Types of Failures. Failures are generally classified as transaction, system, and
media failures. There are several possible reasons for a transaction to fail in the mid-
dle of execution:

1. A computer failure (system crash). A hardware, software, or network error
occurs in the computer system during transaction execution. Hardware
crashes are usually media failures—for example, main memory failure.

2. A transaction or system error. Some operation in the transaction may cause
it to fail, such as integer overflow or division by zero. Transaction failure may
also occur because of erroneous parameter values or because of a logical
programming error.3 Additionally, the user may interrupt the transaction
during its execution.

3. Local errors or exception conditions detected by the transaction. During
transaction execution, certain conditions may occur that necessitate cancel-
lation of the transaction. For example, data for the transaction may not be
found. An exception condition,4 such as insufficient account balance in a
banking database, may cause a transaction, such as a fund withdrawal, to be
canceled. This exception could be programmed in the transaction itself, and
in such a case would not be considered as a transaction failure.

3In general, a transaction should be thoroughly tested to ensure that it does not have any bugs (logical
programming errors).
4Exception conditions, if programmed correctly, do not constitute transaction failures.
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4. Concurrency control enforcement. The concurrency control method (see
Chapter 22) may decide to abort a transaction because it violates serializabil-
ity (see Section 21.5), or it may abort one or more transactions to resolve a
state of deadlock among several transactions (see Section 22.1.3).
Transactions aborted because of serializability violations or deadlocks are
typically restarted automatically at a later time.

5. Disk failure. Some disk blocks may lose their data because of a read or write
malfunction or because of a disk read/write head crash. This may happen
during a read or a write operation of the transaction.

6. Physical problems and catastrophes. This refers to an endless list of prob-
lems that includes power or air-conditioning failure, fire, theft, sabotage,
overwriting disks or tapes by mistake, and mounting of a wrong tape by the
operator.

Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6.
Whenever a failure of type 1 through 4 occurs, the system must keep sufficient
information to quickly recover from the failure. Disk failure or other catastrophic
failures of type 5 or 6 do not happen frequently; if they do occur, recovery is a major
task. We discuss recovery from failure in Chapter 23.

The concept of transaction is fundamental to many techniques for concurrency
control and recovery from failures.

21.2 Transaction and System Concepts
In this section we discuss additional concepts relevant to transaction processing.
Section 21.2.1 describes the various states a transaction can be in, and discusses
other operations needed in transaction processing. Section 21.2.2 discusses the sys-
tem log, which keeps information about transactions and data items that will be
needed for recovery. Section 21.2.3 describes the concept of commit points of trans-
actions, and why they are important in transaction processing.

21.2.1 Transaction States and Additional Operations
A transaction is an atomic unit of work that should either be completed in its
entirety or not done at all. For recovery purposes, the system needs to keep track of
when each transaction starts, terminates, and commits or aborts (see Section
21.2.3). Therefore, the recovery manager of the DBMS needs to keep track of the
following operations:

■ BEGIN_TRANSACTION. This marks the beginning of transaction execution.

■ READ or WRITE. These specify read or write operations on the database
items that are executed as part of a transaction.

■ END_TRANSACTION. This specifies that READ and WRITE transaction oper-
ations have ended and marks the end of transaction execution. However, at
this point it may be necessary to check whether the changes introduced by
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Active

Begin
transaction

End
transaction Commit

AbortAbort

Read, Write

Partially committed

Failed Terminated

Committed

Figure 21.4
State transition diagram illustrating the states for
transaction execution.

the transaction can be permanently applied to the database (committed) or
whether the transaction has to be aborted because it violates serializability
(see Section 21.5) or for some other reason.

■ COMMIT_TRANSACTION. This signals a successful end of the transaction so
that any changes (updates) executed by the transaction can be safely
committed to the database and will not be undone.

■ ROLLBACK (or ABORT). This signals that the transaction has ended unsuc-
cessfully, so that any changes or effects that the transaction may have applied
to the database must be undone.

Figure 21.4 shows a state transition diagram that illustrates how a transaction moves
through its execution states. A transaction goes into an active state immediately after
it starts execution, where it can execute its READ and WRITE operations. When the
transaction ends, it moves to the partially committed state. At this point, some
recovery protocols need to ensure that a system failure will not result in an inability
to record the changes of the transaction permanently (usually by recording changes
in the system log, discussed in the next section).5 Once this check is successful, the
transaction is said to have reached its commit point and enters the committed state.
Commit points are discussed in more detail in Section 21.2.3. When a transaction is
committed, it has concluded its execution successfully and all its changes must be
recorded permanently in the database, even if a system failure occurs.

However, a transaction can go to the failed state if one of the checks fails or if the
transaction is aborted during its active state. The transaction may then have to be
rolled back to undo the effect of its WRITE operations on the database. The
terminated state corresponds to the transaction leaving the system. The transaction
information that is maintained in system tables while the transaction has been run-
ning is removed when the transaction terminates. Failed or aborted transactions
may be restarted later—either automatically or after being resubmitted by the
user—as brand new transactions.

5Optimistic concurrency control (see Section 22.4) also requires that certain checks are made at this
point to ensure that the transaction did not interfere with other executing transactions.
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21.2.2 The System Log
To be able to recover from failures that affect transactions, the system maintains a
log6 to keep track of all transaction operations that affect the values of database
items, as well as other transaction information that may be needed to permit recov-
ery from failures. The log is a sequential, append-only file that is kept on disk, so it
is not affected by any type of failure except for disk or catastrophic failure. Typically,
one (or more) main memory buffers hold the last part of the log file, so that log
entries are first added to the main memory buffer. When the log buffer is filled, or
when certain other conditions occur, the log buffer is appended to the end of the log
file on disk. In addition, the log file from disk is periodically backed up to archival
storage (tape) to guard against catastrophic failures. The following are the types of
entries—called log records—that are written to the log file and the corresponding
action for each log record. In these entries, T refers to a unique transaction-id that
is generated automatically by the system for each transaction and that is used to
identify each transaction:

1. [start_transaction, T]. Indicates that transaction T has started execution.

2. [write_item, T, X, old_value, new_value]. Indicates that transaction T has
changed the value of database item X from old_value to new_value.

3. [read_item, T, X]. Indicates that transaction T has read the value of database
item X.

4. [commit, T]. Indicates that transaction T has completed successfully, and
affirms that its effect can be committed (recorded permanently) to the data-
base.

5. [abort, T]. Indicates that transaction T has been aborted.

Protocols for recovery that avoid cascading rollbacks (see Section 21.4.2)—which
include nearly all practical protocols—do not require that READ operations are writ-
ten to the system log. However, if the log is also used for other purposes—such as
auditing (keeping track of all database operations)—then such entries can be
included. Additionally, some recovery protocols require simpler WRITE entries only
include one of new_value and old_value instead of including both (see Section
21.4.2).

Notice that we are assuming that all permanent changes to the database occur
within transactions, so the notion of recovery from a transaction failure amounts to
either undoing or redoing transaction operations individually from the log. If the
system crashes, we can recover to a consistent database state by examining the log
and using one of the techniques described in Chapter 23. Because the log contains a
record of every WRITE operation that changes the value of some database item, it is
possible to undo the effect of these WRITE operations of a transaction T by tracing
backward through the log and resetting all items changed by a WRITE operation of
T to their old_values. Redo of an operation may also be necessary if a transaction has
its updates recorded in the log but a failure occurs before the system can be sure that

6The log has sometimes been called the DBMS journal.
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all these new_values have been written to the actual database on disk from the main
memory buffers.7

21.2.3 Commit Point of a Transaction
A transaction T reaches its commit point when all its operations that access the
database have been executed successfully and the effect of all the transaction opera-
tions on the database have been recorded in the log. Beyond the commit point, the
transaction is said to be committed, and its effect must be permanently recorded in
the database. The transaction then writes a commit record [commit, T] into the log.
If a system failure occurs, we can search back in the log for all transactions T that
have written a [start_transaction, T] record into the log but have not written their
[commit, T] record yet; these transactions may have to be rolled back to undo their
effect on the database during the recovery process. Transactions that have written
their commit record in the log must also have recorded all their WRITE operations in
the log, so their effect on the database can be redone from the log records.

Notice that the log file must be kept on disk. As discussed in Chapter 17, updating a
disk file involves copying the appropriate block of the file from disk to a buffer in
main memory, updating the buffer in main memory, and copying the buffer to disk.
It is common to keep one or more blocks of the log file in main memory buffers,
called the log buffer, until they are filled with log entries and then to write them
back to disk only once, rather than writing to disk every time a log entry is added.
This saves the overhead of multiple disk writes of the same log file buffer. At the
time of a system crash, only the log entries that have been written back to disk are
considered in the recovery process because the contents of main memory may be
lost. Hence, before a transaction reaches its commit point, any portion of the log
that has not been written to the disk yet must now be written to the disk. This
process is called force-writing the log buffer before committing a transaction.

21.3 Desirable Properties of Transactions
Transactions should possess several properties, often called the ACID properties;
they should be enforced by the concurrency control and recovery methods of the
DBMS. The following are the ACID properties:

■ Atomicity. A transaction is an atomic unit of processing; it should either be
performed in its entirety or not performed at all.

■ Consistency preservation. A transaction should be consistency preserving,
meaning that if it is completely executed from beginning to end without
interference from other transactions, it should take the database from one
consistent state to another.

■ Isolation. A transaction should appear as though it is being executed in iso-
lation from other transactions, even though many transactions are executing

7Undo and redo are discussed more fully in Chapter 23.
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concurrently. That is, the execution of a transaction should not be interfered
with by any other transactions executing concurrently.

■ Durability or permanency. The changes applied to the database by a com-
mitted transaction must persist in the database. These changes must not be
lost because of any failure.

The atomicity property requires that we execute a transaction to completion. It is the
responsibility of the transaction recovery subsystem of a DBMS to ensure atomicity.
If a transaction fails to complete for some reason, such as a system crash in the
midst of transaction execution, the recovery technique must undo any effects of the
transaction on the database. On the other hand, write operations of a committed
transaction must be eventually written to disk.

The preservation of consistency is generally considered to be the responsibility of the
programmers who write the database programs or of the DBMS module that
enforces integrity constraints. Recall that a database state is a collection of all the
stored data items (values) in the database at a given point in time. A consistent state
of the database satisfies the constraints specified in the schema as well as any other
constraints on the database that should hold. A database program should be written
in a way that guarantees that, if the database is in a consistent state before executing
the transaction, it will be in a consistent state after the complete execution of the
transaction, assuming that no interference with other transactions occurs.

The isolation property is enforced by the concurrency control subsystem of the
DBMS.8 If every transaction does not make its updates (write operations) visible to
other transactions until it is committed, one form of isolation is enforced that solves
the temporary update problem and eliminates cascading rollbacks (see Chapter 23)
but does not eliminate all other problems. There have been attempts to define the
level of isolation of a transaction. A transaction is said to have level 0 (zero) isola-
tion if it does not overwrite the dirty reads of higher-level transactions. Level 1
(one) isolation has no lost updates, and level 2 isolation has no lost updates and no
dirty reads. Finally, level 3 isolation (also called true isolation) has, in addition to
level 2 properties, repeatable reads.9

And last, the durability property is the responsibility of the recovery subsystem of the
DBMS. We will introduce how recovery protocols enforce durability and atomicity
in the next section and then discuss this in more detail in Chapter 23.

21.4 Characterizing Schedules Based 
on Recoverability

When transactions are executing concurrently in an interleaved fashion, then the
order of execution of operations from all the various transactions is known as a
schedule (or history). In this section, first we define the concept of schedules, and

8We will discuss concurrency control protocols in Chapter 22.
9The SQL syntax for isolation level discussed later in Section 21.6 is closely related to these levels.
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then we characterize the types of schedules that facilitate recovery when failures
occur. In Section 21.5, we characterize schedules in terms of the interference of par-
ticipating transactions, leading to the concepts of serializability and serializable
schedules.

21.4.1 Schedules (Histories) of Transactions
A schedule (or history) S of n transactions T1, T2, ..., Tn is an ordering of the oper-
ations of the transactions. Operations from different transactions can be interleaved
in the schedule S. However, for each transaction Ti that participates in the schedule
S, the operations of Ti in S must appear in the same order in which they occur in Ti.
The order of operations in S is considered to be a total ordering, meaning that for
any two operations in the schedule, one must occur before the other. It is possible
theoretically to deal with schedules whose operations form partial orders (as we 
discuss later), but we will assume for now total ordering of the operations in a 
schedule.

For the purpose of recovery and concurrency control, we are mainly interested in
the read_item and write_item operations of the transactions, as well as the commit and
abort operations. A shorthand notation for describing a schedule uses the symbols b,
r, w, e, c, and a for the operations begin_transaction, read_item, write_item, end_transac-
tion, commit, and abort, respectively, and appends as a subscript the transaction id
(transaction number) to each operation in the schedule. In this notation, the data-
base item X that is read or written follows the r and w operations in parentheses. In
some schedules, we will only show the read and write operations, whereas in other
schedules, we will show all the operations. For example, the schedule in Figure
21.3(a), which we shall call Sa, can be written as follows in this notation:

Sa: r1(X); r2(X); w1(X); r1(Y); w2(X); w1(Y);

Similarly, the schedule for Figure 21.3(b), which we call Sb, can be written as follows,
if we assume that transaction T1 aborted after its read_item(Y) operation:

Sb: r1(X); w1(X); r2(X); w2(X); r1(Y); a1;

Two operations in a schedule are said to conflict if they satisfy all three of the fol-
lowing conditions: (1) they belong to different transactions; (2) they access the same
item X; and (3) at least one of the operations is a write_item(X). For example, in
schedule Sa, the operations r1(X) and w2(X) conflict, as do the operations r2(X) and
w1(X), and the operations w1(X) and w2(X). However, the operations r1(X) and
r2(X) do not conflict, since they are both read operations; the operations w2(X)
and w1(Y) do not conflict because they operate on distinct data items X and Y; and
the operations r1(X) and w1(X) do not conflict because they belong to the same
transaction.

Intuitively, two operations are conflicting if changing their order can result in a dif-
ferent outcome. For example, if we change the order of the two operations r1(X);
w2(X) to w2(X); r1(X), then the value of X that is read by transaction T1 changes,
because in the second order the value of X is changed by w2(X) before it is read by
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r1(X), whereas in the first order the value is read before it is changed. This is called a
read-write conflict. The other type is called a write-write conflict, and is illustrated
by the case where we change the order of two operations such as w1(X); w2(X) to
w2(X); w1(X). For a write-write conflict, the last value of X will differ because in one
case it is written by T2 and in the other case by T1. Notice that two read operations
are not conflicting because changing their order makes no difference in outcome.

The rest of this section covers some theoretical definitions concerning schedules. A
schedule S of n transactions T1, T2, ..., Tn is said to be a complete schedule if the
following conditions hold:

1. The operations in S are exactly those operations in T1, T2, ..., Tn, including a
commit or abort operation as the last operation for each transaction in the
schedule.

2. For any pair of operations from the same transaction Ti, their relative order
of appearance in S is the same as their order of appearance in Ti.

3. For any two conflicting operations, one of the two must occur before the
other in the schedule.10

The preceding condition (3) allows for two nonconflicting operations to occur in the
schedule without defining which occurs first, thus leading to the definition of a
schedule as a partial order of the operations in the n transactions.11 However, a
total order must be specified in the schedule for any pair of conflicting operations
(condition 3) and for any pair of operations from the same transaction (condition
2). Condition 1 simply states that all operations in the transactions must appear in
the complete schedule. Since every transaction has either committed or aborted, a
complete schedule will not contain any active transactions at the end of the schedule.

In general, it is difficult to encounter complete schedules in a transaction processing
system because new transactions are continually being submitted to the system.
Hence, it is useful to define the concept of the committed projection C(S) of a
schedule S, which includes only the operations in S that belong to committed trans-
actions—that is, transactions Ti whose commit operation ci is in S.

21.4.2 Characterizing Schedules Based on Recoverability
For some schedules it is easy to recover from transaction and system failures,
whereas for other schedules the recovery process can be quite involved. In some
cases, it is even not possible to recover correctly after a failure. Hence, it is important
to characterize the types of schedules for which recovery is possible, as well as those
for which recovery is relatively simple. These characterizations do not actually pro-
vide the recovery algorithm; they only attempt to theoretically characterize the dif-
ferent types of schedules.

10Theoretically, it is not necessary to determine an order between pairs of nonconflicting operations.
11In practice, most schedules have a total order of operations. If parallel processing is employed, it is
theoretically possible to have schedules with partially ordered nonconflicting operations.
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First, we would like to ensure that, once a transaction T is committed, it should
never be necessary to roll back T. This ensures that the durability property of trans-
actions is not violated (see Section 21.3). The schedules that theoretically meet this
criterion are called recoverable schedules; those that do not are called
nonrecoverable and hence should not be permitted by the DBMS. The definition of
recoverable schedule is as follows: A schedule S is recoverable if no transaction T in
S commits until all transactions T� that have written some item X that T reads have
committed. A transaction T reads from transaction T� in a schedule S if some item
X is first written by T� and later read by T. In addition, T� should not have been
aborted before T reads item X, and there should be no transactions that write X after
T� writes it and before T reads it (unless those transactions, if any, have aborted
before T reads X).

Some recoverable schedules may require a complex recovery process as we shall see,
but if sufficient information is kept (in the log), a recovery algorithm can be devised
for any recoverable schedule. The (partial) schedules Sa and Sb from the preceding
section are both recoverable, since they satisfy the above definition. Consider the
schedule Sa� given below, which is the same as schedule Sa except that two commit
operations have been added to Sa:

Sa�: r1(X); r2(X); w1(X); r1(Y); w2(X); c2; w1(Y); c1;

Sa� is recoverable, even though it suffers from the lost update problem; this problem
is handled by serializability theory (see Section 21.5). However, consider the two
(partial) schedules Sc and Sd that follow:

Sc: r1(X); w1(X); r2(X); r1(Y); w2(X); c2; a1;

Sd: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); c1; c2;

Se: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); a1; a2;

Sc is not recoverable because T2 reads item X from T1, but T2 commits before T1
commits. The problem occurs if T1 aborts after the c2 operation in Sc, then the value
of X that T2 read is no longer valid and T2 must be aborted after it is committed,
leading to a schedule that is not recoverable. For the schedule to be recoverable, the c2
operation in Sc must be postponed until after T1 commits, as shown in Sd. If T1
aborts instead of committing, then T2 should also abort as shown in Se, because the
value of X it read is no longer valid. In Se, aborting T2 is acceptable since it has not
committed yet, which is not the case for the nonrecoverable schedule Sc.

In a recoverable schedule, no committed transaction ever needs to be rolled back,
and so the definition of committed transaction as durable is not violated. However,
it is possible for a phenomenon known as cascading rollback (or cascading abort)
to occur in some recoverable schedules, where an uncommitted transaction has to be
rolled back because it read an item from a transaction that failed. This is illustrated
in schedule Se, where transaction T2 has to be rolled back because it read item X
from T1, and T1 then aborted.

Because cascading rollback can be quite time-consuming—since numerous transac-
tions can be rolled back (see Chapter 23)—it is important to characterize the sched-
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ules where this phenomenon is guaranteed not to occur. A schedule is said to be
cascadeless, or to avoid cascading rollback, if every transaction in the schedule reads
only items that were written by committed transactions. In this case, all items read
will not be discarded, so no cascading rollback will occur. To satisfy this criterion, the
r2(X) command in schedules Sd and Se must be postponed until after T1 has commit-
ted (or aborted), thus delaying T2 but ensuring no cascading rollback if T1 aborts.

Finally, there is a third, more restrictive type of schedule, called a strict schedule, in
which transactions can neither read nor write an item X until the last transaction that
wrote X has committed (or aborted). Strict schedules simplify the recovery process.
In a strict schedule, the process of undoing a write_item(X) operation of an aborted
transaction is simply to restore the before image (old_value or BFIM) of data item X.
This simple procedure always works correctly for strict schedules, but it may not
work for recoverable or cascadeless schedules. For example, consider schedule Sf :

Sf : w1(X, 5); w2(X, 8); a1;

Suppose that the value of X was originally 9, which is the before image stored in the
system log along with the w1(X, 5) operation. If T1 aborts, as in Sf , the recovery pro-
cedure that restores the before image of an aborted write operation will restore the
value of X to 9, even though it has already been changed to 8 by transaction T2, thus
leading to potentially incorrect results. Although schedule Sf is cascadeless, it is not
a strict schedule, since it permits T2 to write item X even though the transaction T1
that last wrote X had not yet committed (or aborted). A strict schedule does not
have this problem.

It is important to note that any strict schedule is also cascadeless, and any cascade-
less schedule is also recoverable. Suppose we have i transactions T1, T2, ..., Ti, and
their number of operations are n1, n2, ..., ni, respectively. If we make a set of all pos-
sible schedules of these transactions, we can divide the schedules into two disjoint
subsets: recoverable and nonrecoverable. The cascadeless schedules will be a subset
of the recoverable schedules, and the strict schedules will be a subset of the cascade-
less schedules. Thus, all strict schedules are cascadeless, and all cascadeless schedules
are recoverable.

21.5 Characterizing Schedules Based 
on Serializability

In the previous section, we characterized schedules based on their recoverability
properties. Now we characterize the types of schedules that are always considered to
be correct when concurrent transactions are executing. Such schedules are known as
serializable schedules. Suppose that two users—for example, two airline reservations
agents—submit to the DBMS transactions T1 and T2 in Figure 21.2 at approxi-
mately the same time. If no interleaving of operations is permitted, there are only
two possible outcomes:

1. Execute all the operations of transaction T1 (in sequence) followed by all the
operations of transaction T2 (in sequence).
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Schedule A Schedule B

read_item(X );
X := X – N;

write_item(X );
read_item(Y );

read_item(X );
X := X + M;
write_item(X );

Time
Y := Y + N;
write_item(Y );

 (b)

read_item(X );
X := X + M;
write_item(X );

Time read_item(X );
X := X – N;

write_item(X );
read_item(Y );

Y := Y + N;
write_item(Y );
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read_item(X );
X := X – N;
write_item(X );

read_item(Y );
Y := Y + N;
write_item(Y );

T1 T2

T1 T2 T1 T2

Time
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Figure 21.5
Examples of serial and nonserial schedules involving transactions T1 and T2. (a)
Serial schedule A: T1 followed by T2. (b) Serial schedule B: T2 followed by T1.
(c) Two nonserial schedules C and D with interleaving of operations.

2. Execute all the operations of transaction T2 (in sequence) followed by all the
operations of transaction T1 (in sequence).

These two schedules—called serial schedules—are shown in Figure 21.5(a) and (b),
respectively. If interleaving of operations is allowed, there will be many possible
orders in which the system can execute the individual operations of the transac-
tions. Two possible schedules are shown in Figure 21.5(c). The concept of
serializability of schedules is used to identify which schedules are correct when
transaction executions have interleaving of their operations in the schedules. This
section defines serializability and discusses how it may be used in practice.
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21.5.1 Serial, Nonserial, and Conflict-Serializable Schedules
Schedules A and B in Figure 21.5(a) and (b) are called serial because the operations
of each transaction are executed consecutively, without any interleaved operations
from the other transaction. In a serial schedule, entire transactions are performed in
serial order: T1 and then T2 in Figure 21.5(a), and T2 and then T1 in Figure 21.5(b).
Schedules C and D in Figure 21.5(c) are called nonserial because each sequence
interleaves operations from the two transactions.

Formally, a schedule S is serial if, for every transaction T participating in the sched-
ule, all the operations of T are executed consecutively in the schedule; otherwise, the
schedule is called nonserial. Therefore, in a serial schedule, only one transaction at
a time is active—the commit (or abort) of the active transaction initiates execution
of the next transaction. No interleaving occurs in a serial schedule. One reasonable
assumption we can make, if we consider the transactions to be independent, is that
every serial schedule is considered correct. We can assume this because every transac-
tion is assumed to be correct if executed on its own (according to the consistency
preservation property of Section 21.3). Hence, it does not matter which transaction
is executed first. As long as every transaction is executed from beginning to end in
isolation from the operations of other transactions, we get a correct end result on
the database.

The problem with serial schedules is that they limit concurrency by prohibiting
interleaving of operations. In a serial schedule, if a transaction waits for an I/O
operation to complete, we cannot switch the CPU processor to another transaction,
thus wasting valuable CPU processing time. Additionally, if some transaction T is
quite long, the other transactions must wait for T to complete all its operations
before starting. Hence, serial schedules are considered unacceptable in practice.
However, if we can determine which other schedules are equivalent to a serial sched-
ule, we can allow these schedules to occur.

To illustrate our discussion, consider the schedules in Figure 21.5, and assume that
the initial values of database items are X = 90 and Y = 90 and that N = 3 and M = 2.
After executing transactions T1 and T2, we would expect the database values to be X
= 89 and Y = 93, according to the meaning of the transactions. Sure enough, execut-
ing either of the serial schedules A or B gives the correct results. Now consider the
nonserial schedules C and D. Schedule C (which is the same as Figure 21.3(a)) gives
the results X = 92 and Y = 93, in which the X value is erroneous, whereas schedule D
gives the correct results.

Schedule C gives an erroneous result because of the lost update problem discussed in
Section 21.1.3; transaction T2 reads the value of X before it is changed by transac-
tion T1, so only the effect of T2 on X is reflected in the database. The effect of T1 on
X is lost, overwritten by T2, leading to the incorrect result for item X. However, some
nonserial schedules give the correct expected result, such as schedule D. We would
like to determine which of the nonserial schedules always give a correct result and
which may give erroneous results. The concept used to characterize schedules in this
manner is that of serializability of a schedule.
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S1

read_item(X );
X := X + 10;
write_item(X );

S2

read_item(X );
X := X * 1.1;
write_item (X );

Figure 21.6
Two schedules that are result
equivalent for the initial value
of X = 100 but are not result
equivalent in general.

The definition of serializable schedule is as follows: A schedule S of n transactions is
serializable if it is equivalent to some serial schedule of the same n transactions. We
will define the concept of equivalence of schedules shortly. Notice that there are n!
possible serial schedules of n transactions and many more possible nonserial sched-
ules. We can form two disjoint groups of the nonserial schedules—those that are
equivalent to one (or more) of the serial schedules and hence are serializable, and
those that are not equivalent to any serial schedule and hence are not serializable.

Saying that a nonserial schedule S is serializable is equivalent to saying that it is cor-
rect, because it is equivalent to a serial schedule, which is considered correct. The
remaining question is: When are two schedules considered equivalent?

There are several ways to define schedule equivalence. The simplest but least satis-
factory definition involves comparing the effects of the schedules on the database.
Two schedules are called result equivalent if they produce the same final state of the
database. However, two different schedules may accidentally produce the same final
state. For example, in Figure 21.6, schedules S1 and S2 will produce the same final
database state if they execute on a database with an initial value of X = 100; however,
for other initial values of X, the schedules are not result equivalent. Additionally,
these schedules execute different transactions, so they definitely should not be con-
sidered equivalent. Hence, result equivalence alone cannot be used to define equiv-
alence of schedules. The safest and most general approach to defining schedule
equivalence is not to make any assumptions about the types of operations included
in the transactions. For two schedules to be equivalent, the operations applied to
each data item affected by the schedules should be applied to that item in both
schedules in the same order. Two definitions of equivalence of schedules are gener-
ally used: conflict equivalence and view equivalence. We discuss conflict equivalence
next, which is the more commonly used definition.

The definition of conflict equivalence of schedules is as follows: Two schedules are
said to be conflict equivalent if the order of any two conflicting operations is the
same in both schedules. Recall from Section 21.4.1 that two operations in a schedule
are said to conflict if they belong to different transactions, access the same database
item, and either both are write_item operations or one is a write_item and the other a
read_item. If two conflicting operations are applied in different orders in two sched-
ules, the effect can be different on the database or on the transactions in the sched-
ule, and hence the schedules are not conflict equivalent. For example, as we
discussed in Section 21.4.1, if a read and write operation occur in the order r1(X),
w2(X) in schedule S1, and in the reverse order w2(X), r1(X) in schedule S2, the value
read by r1(X) can be different in the two schedules. Similarly, if two write operations
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occur in the order w1(X), w2(X) in S1, and in the reverse order w2(X), w1(X) in S2,
the next r(X) operation in the two schedules will read potentially different values; or
if these are the last operations writing item X in the schedules, the final value of item
X in the database will be different.

Using the notion of conflict equivalence, we define a schedule S to be conflict seri-
alizable12 if it is (conflict) equivalent to some serial schedule S�. In such a case, we
can reorder the nonconflicting operations in S until we form the equivalent serial
schedule S�. According to this definition, schedule D in Figure 21.5(c) is equivalent
to the serial schedule A in Figure 21.5(a). In both schedules, the read_item(X) of T2
reads the value of X written by T1, while the other read_item operations read the
database values from the initial database state. Additionally, T1 is the last transaction
to write Y, and T2 is the last transaction to write X in both schedules. Because A is a
serial schedule and schedule D is equivalent to A, D is a serializable schedule. Notice
that the operations r1(Y) and w1(Y) of schedule D do not conflict with the opera-
tions r2(X) and w2(X), since they access different data items. Therefore, we can move
r1(Y), w1(Y) before r2(X), w2(X), leading to the equivalent serial schedule T1, T2.

Schedule C in Figure 21.5(c) is not equivalent to either of the two possible serial
schedules A and B, and hence is not serializable. Trying to reorder the operations of
schedule C to find an equivalent serial schedule fails because r2(X) and w1(X) con-
flict, which means that we cannot move r2(X) down to get the equivalent serial
schedule T1, T2. Similarly, because w1(X) and w2(X) conflict, we cannot move w1(X)
down to get the equivalent serial schedule T2, T1.

Another, more complex definition of equivalence—called view equivalence, which
leads to the concept of view serializability—is discussed in Section 21.5.4.

21.5.2 Testing for Conflict Serializability of a Schedule
There is a simple algorithm for determining whether a particular schedule is con-
flict serializable or not. Most concurrency control methods do not actually test for
serializability. Rather protocols, or rules, are developed that guarantee that any
schedule that follows these rules will be serializable. We discuss the algorithm for
testing conflict serializability of schedules here to gain a better understanding of
these concurrency control protocols, which are discussed in Chapter 22.

Algorithm 21.1 can be used to test a schedule for conflict serializability. The algo-
rithm looks at only the read_item and write_item operations in a schedule to construct
a precedence graph (or serialization graph), which is a directed graph G = (N, E)
that consists of a set of nodes N = {T1, T2, ..., Tn } and a set of directed edges E = {e1,
e2, ..., em }. There is one node in the graph for each transaction Ti in the schedule.
Each edge ei in the graph is of the form (Tj → Tk ), 1 ≤ j ≤ n, 1 ≤ k n, where Tj is the
starting node of ei and Tk is the ending node of ei. Such an edge from node Tj to

12We will use serializable to mean conflict serializable. Another definition of serializable used in practice
(see Section 21.6) is to have repeatable reads, no dirty reads, and no phantom records (see Section
22.7.1 for a discussion on phantoms).
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node Tk is created by the algorithm if one of the operations in Tj appears in the
schedule before some conflicting operation in Tk.

Algorithm 21.1. Testing Conflict Serializability of a Schedule S

1. For each transaction Ti participating in schedule S, create a node labeled Ti
in the precedence graph.

2. For each case in S where Tj executes a read_item(X) after Ti executes a
write_item(X), create an edge (Ti → Tj) in the precedence graph.

3. For each case in S where Tj executes a write_item(X) after Ti executes a
read_item(X), create an edge (Ti → Tj) in the precedence graph.

4. For each case in S where Tj executes a write_item(X) after Ti executes a
write_item(X), create an edge (Ti → Tj) in the precedence graph.

5. The schedule S is serializable if and only if the precedence graph has no
cycles.

The precedence graph is constructed as described in Algorithm 21.1. If there is a
cycle in the precedence graph, schedule S is not (conflict) serializable; if there is no
cycle, S is serializable. A cycle in a directed graph is a sequence of edges C = ((Tj →
Tk), (Tk → Tp), ..., (Ti → Tj)) with the property that the starting node of each
edge—except the first edge—is the same as the ending node of the previous edge,
and the starting node of the first edge is the same as the ending node of the last edge
(the sequence starts and ends at the same node).

In the precedence graph, an edge from Ti to Tj means that transaction Ti must come
before transaction Tj in any serial schedule that is equivalent to S, because two con-
flicting operations appear in the schedule in that order. If there is no cycle in the
precedence graph, we can create an equivalent serial schedule S� that is equivalent
to S, by ordering the transactions that participate in S as follows: Whenever an edge
exists in the precedence graph from Ti to Tj, Ti must appear before Tj in the equiva-
lent serial schedule S�.13 Notice that the edges (Ti → Tj) in a precedence graph can
optionally be labeled by the name(s) of the data item(s) that led to creating the
edge. Figure 21.7 shows such labels on the edges.

In general, several serial schedules can be equivalent to S if the precedence graph for
S has no cycle. However, if the precedence graph has a cycle, it is easy to show that
we cannot create any equivalent serial schedule, so S is not serializable. The prece-
dence graphs created for schedules A to D, respectively, in Figure 21.5 appear in
Figure 21.7(a) to (d). The graph for schedule C has a cycle, so it is not serializable.
The graph for schedule D has no cycle, so it is serializable, and the equivalent serial
schedule is T1 followed by T2. The graphs for schedules A and B have no cycles, as
expected, because the schedules are serial and hence serializable.

Another example, in which three transactions participate, is shown in Figure 21.8.
Figure 21.8(a) shows the read_item and write_item operations in each transaction.
Two schedules E and F for these transactions are shown in Figure 21.8(b) and (c),

13This process of ordering the nodes of an acrylic graph is known as topological sorting.
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T1(a)

(c)

(b)

(d)

T2

T1

X

X

X

X

T2

T1 T2

T1 T2

X

Figure 21.7
Constructing the precedence graphs for schedules A to D from Figure 21.5 to test
for conflict serializability. (a) Precedence graph for serial schedule A. (b) Precedence
graph for serial schedule B. (c) Precedence graph for schedule C (not serializable).
(d) Precedence graph for schedule D (serializable, equivalent to schedule A).

respectively, and the precedence graphs for schedules E and F are shown in parts (d)
and (e). Schedule E is not serializable because the corresponding precedence graph
has cycles. Schedule F is serializable, and the serial schedule equivalent to F is shown
in Figure 21.8(e). Although only one equivalent serial schedule exists for F, in gen-
eral there may be more than one equivalent serial schedule for a serializable sched-
ule. Figure 21.8(f) shows a precedence graph representing a schedule that has two
equivalent serial schedules. To find an equivalent serial schedule, start with a node
that does not have any incoming edges, and then make sure that the node order for
every edge is not violated.

21.5.3 How Serializability Is Used for Concurrency Control
As we discussed earlier, saying that a schedule S is (conflict) serializable—that is, S is
(conflict) equivalent to a serial schedule—is tantamount to saying that S is correct.
Being serializable is distinct from being serial, however. A serial schedule represents
inefficient processing because no interleaving of operations from different transac-
tions is permitted. This can lead to low CPU utilization while a transaction waits for
disk I/O, or for another transaction to terminate, thus slowing down processing
considerably. A serializable schedule gives the benefits of concurrent execution
without giving up any correctness. In practice, it is quite difficult to test for the seri-
alizability of a schedule. The interleaving of operations from concurrent transac-
tions—which are usually executed as processes by the operating system—is
typically determined by the operating system scheduler, which allocates resources to
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Transaction T1

read_item(X );

write_item(X );

read_item(Y );

write_item(Y );

read_item(X );
write_item(X );

read_item(Y );
write_item(Y );

Transaction T3

read_item(Y );

read_item(Z );

write_item(Y );

write_item(Z );

read_item(Y );
read_item(Z );

write_item(Y);
write_item(Z );

Transaction T2

read_item(Z );

read_item(Y );

write_item(Y );

read_item(X );

write_item(X );

read_item(Z );
read_item(Y );
write_item(Y );

read_item(X );

write_item(X );

(b)

(a)

Schedule E

Time

read_item(X );
write_item(X );

read_item(Y );
write_item(Y );

read_item(Y );
read_item(Z );

write_item(Y );
write_item(Z );

read_item(Z );

read_item(Y );
write_item(Y );
read_item(X );
write_item(X );

(c)

Schedule F

Time

Transaction T1 Transaction T2 Transaction T3

Transaction T1 Transaction T2 Transaction T3

Figure 21.8
Another example of
serializability testing.
(a) The read and write
operations of three
transactions T1, T2,
and T3. (b) Schedule
E. (c) Schedule F.

all processes. Factors such as system load, time of transaction submission, and pri-
orities of processes contribute to the ordering of operations in a schedule. Hence, it
is difficult to determine how the operations of a schedule will be interleaved before-
hand to ensure serializability.
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(d)

X

Y

Y Y, Z

T1

Equivalent serial schedules

None

Reason

Cycle X(T1 T2),Y(T2 T1)
Cycle X(T1 T2),YZ (T2 T3),Y(T3 T1)

(e) X,Y

Y Y, Z

Equivalent serial schedules

(f) Equivalent serial schedules

T2

T3

T1 T2

T3

T1 T2

T3

T2T3 T1

T2T3 T1

T1T3 T2

If transactions are executed at will and then the resulting schedule is tested for seri-
alizability, we must cancel the effect of the schedule if it turns out not to be serializ-
able. This is a serious problem that makes this approach impractical. Hence, the
approach taken in most practical systems is to determine methods or protocols that
ensure serializability, without having to test the schedules themselves. The approach
taken in most commercial DBMSs is to design protocols (sets of rules) that—if fol-
lowed by every individual transaction or if enforced by a DBMS concurrency con-
trol subsystem—will ensure serializability of all schedules in which the transactions
participate.

Another problem appears here: When transactions are submitted continuously to
the system, it is difficult to determine when a schedule begins and when it ends.
Serializability theory can be adapted to deal with this problem by considering only
the committed projection of a schedule S. Recall from Section 21.4.1 that the
committed projection C(S) of a schedule S includes only the operations in S that
belong to committed transactions. We can theoretically define a schedule S to be
serializable if its committed projection C(S) is equivalent to some serial schedule,
since only committed transactions are guaranteed by the DBMS.

Figure 21.8 (continued)
Another example of serializability testing.
(d) Precedence graph for schedule E. 
(e) Precedence graph for schedule F. 
(f) Precedence graph with two equivalent
serial schedules.
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In Chapter 22, we discuss a number of different concurrency control protocols that
guarantee serializability. The most common technique, called two-phase locking, is
based on locking data items to prevent concurrent transactions from interfering
with one another, and enforcing an additional condition that guarantees serializ-
ability. This is used in the majority of commercial DBMSs. Other protocols have
been proposed;14 these include timestamp ordering, where each transaction is
assigned a unique timestamp and the protocol ensures that any conflicting opera-
tions are executed in the order of the transaction timestamps; multiversion protocols,
which are based on maintaining multiple versions of data items; and optimistic (also
called certification or validation) protocols, which check for possible serializability
violations after the transactions terminate but before they are permitted to commit.

21.5.4 View Equivalence and View Serializability
In Section 21.5.1 we defined the concepts of conflict equivalence of schedules and
conflict serializability. Another less restrictive definition of equivalence of schedules
is called view equivalence. This leads to another definition of serializability called
view serializability. Two schedules S and S� are said to be view equivalent if the fol-
lowing three conditions hold:

1. The same set of transactions participates in S and S�, and S and S� include the
same operations of those transactions.

2. For any operation ri(X) of Ti in S, if the value of X read by the operation has
been written by an operation wj(X) of Tj (or if it is the original value of X
before the schedule started), the same condition must hold for the value of X
read by operation ri(X) of Ti in S�.

3. If the operation wk(Y) of Tk is the last operation to write item Y in S, then
wk(Y) of Tk must also be the last operation to write item Y in S�.

The idea behind view equivalence is that, as long as each read operation of a trans-
action reads the result of the same write operation in both schedules, the write
operations of each transaction must produce the same results. The read operations
are hence said to see the same view in both schedules. Condition 3 ensures that the
final write operation on each data item is the same in both schedules, so the data-
base state should be the same at the end of both schedules. A schedule S is said to be
view serializable if it is view equivalent to a serial schedule.

The definitions of conflict serializability and view serializability are similar if a con-
dition known as the constrained write assumption (or no blind writes) holds on
all transactions in the schedule. This condition states that any write operation wi(X)
in Ti is preceded by a ri(X) in Ti and that the value written by wi(X) in Ti depends
only on the value of X read by ri(X). This assumes that computation of the new
value of X is a function f(X) based on the old value of X read from the database. A
blind write is a write operation in a transaction T on an item X that is not depen-
dent on the value of X, so it is not preceded by a read of X in the transaction T.

14These other protocols have not been incorporated much into commercial systems; most relational
DBMSs use some variation of the two-phase locking protocol.
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The definition of view serializability is less restrictive than that of conflict serializ-
ability under the unconstrained write assumption, where the value written by an
operation wi(X) in Ti can be independent of its old value from the database. This is
possible when blind writes are allowed, and it is illustrated by the following schedule
Sg of three transactions T1: r1(X); w1(X); T2: w2(X); and T3: w3(X):

Sg: r1(X); w2(X); w1(X); w3(X); c1; c2; c3;

In Sg the operations w2(X) and w3(X) are blind writes, since T2 and T3 do not read
the value of X. The schedule Sg is view serializable, since it is view equivalent to the
serial schedule T1, T2, T3. However, Sg is not conflict serializable, since it is not 
conflict equivalent to any serial schedule. It has been shown that any conflict-
serializable schedule is also view serializable but not vice versa, as illustrated by the
preceding example. There is an algorithm to test whether a schedule S is view serial-
izable or not. However, the problem of testing for view serializability has been
shown to be NP-hard, meaning that finding an efficient polynomial time algorithm
for this problem is highly unlikely.

21.5.5 Other Types of Equivalence of Schedules
Serializability of schedules is sometimes considered to be too restrictive as a condi-
tion for ensuring the correctness of concurrent executions. Some applications can
produce schedules that are correct by satisfying conditions less stringent than either
conflict serializability or view serializability. An example is the type of transactions
known as debit-credit transactions—for example, those that apply deposits and
withdrawals to a data item whose value is the current balance of a bank account.
The semantics of debit-credit operations is that they update the value of a data item
X by either subtracting from or adding to the value of the data item. Because addi-
tion and subtraction operations are commutative—that is, they can be applied in
any order—it is possible to produce correct schedules that are not serializable. For
example, consider the following transactions, each of which may be used to transfer
an amount of money between two bank accounts:

T1: r1(X); X := X − 10; w1(X); r1(Y); Y := Y + 10; w1(Y);

T2: r2(Y); Y := Y − 20; w2(Y); r2(X); X := X + 20; w2(X);

Consider the following nonserializable schedule Sh for the two transactions:

Sh: r1(X); w1(X); r2(Y); w2(Y); r1(Y); w1(Y); r2(X); w2(X);

With the additional knowledge, or semantics, that the operations between each ri(I)
and wi(I) are commutative, we know that the order of executing the sequences con-
sisting of (read, update, write) is not important as long as each (read, update, write)
sequence by a particular transaction Ti on a particular item I is not interrupted by
conflicting operations. Hence, the schedule Sh is considered to be correct even
though it is not serializable. Researchers have been working on extending concur-
rency control theory to deal with cases where serializability is considered to be too
restrictive as a condition for correctness of schedules. Also, in certain domains of
applications such as computer aided design (CAD) of complex systems like aircraft,
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design transactions last over a long time period. In such applications, more relaxed
schemes of concurrency control have been proposed to maintain consistency of the
database.

21.6 Transaction Support in SQL
In this section, we give a brief introduction to transaction support in SQL. There are
many more details, and the newer standards have more commands for transaction
processing. The basic definition of an SQL transaction is similar to our already
defined concept of a transaction. That is, it is a logical unit of work and is guaran-
teed to be atomic. A single SQL statement is always considered to be atomic—either
it completes execution without an error or it fails and leaves the database
unchanged.

With SQL, there is no explicit Begin_Transaction statement. Transaction initiation is
done implicitly when particular SQL statements are encountered. However, every
transaction must have an explicit end statement, which is either a COMMIT or a
ROLLBACK. Every transaction has certain characteristics attributed to it. These
characteristics are specified by a SET TRANSACTION statement in SQL. The charac-
teristics are the access mode, the diagnostic area size, and the isolation level.

The access mode can be specified as READ ONLY or READ WRITE. The default is
READ WRITE, unless the isolation level of READ UNCOMMITTED is specified (see
below), in which case READ ONLY is assumed. A mode of READ WRITE allows select,
update, insert, delete, and create commands to be executed. A mode of READ ONLY,
as the name implies, is simply for data retrieval.

The diagnostic area size option, DIAGNOSTIC SIZE n, specifies an integer value n,
which indicates the number of conditions that can be held simultaneously in the
diagnostic area. These conditions supply feedback information (errors or excep-
tions) to the user or program on the n most recently executed SQL statement.

The isolation level option is specified using the statement ISOLATION LEVEL 
<isolation>, where the value for <isolation> can be READ UNCOMMITTED, READ
COMMITTED, REPEATABLE READ, or SERIALIZABLE.15 The default isolation level is
SERIALIZABLE, although some systems use READ COMMITTED as their default. The
use of the term SERIALIZABLE here is based on not allowing violations that cause
dirty read, unrepeatable read, and phantoms,16 and it is thus not identical to the way
serializability was defined earlier in Section 21.5. If a transaction executes at a lower
isolation level than SERIALIZABLE, then one or more of the following three viola-
tions may occur:

1. Dirty read. A transaction T1 may read the update of a transaction T2, which
has not yet committed. If T2 fails and is aborted, then T1 would have read a
value that does not exist and is incorrect.

15These are similar to the isolation levels discussed briefly at the end of Section 21.3.
16The dirty read and unrepeatable read problems were discussed in Section 21.1.3. Phantoms are dis-
cussed in Section 22.7.1.
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Table 21.1 Possible Violations Based on Isolation Levels as Defined in SQL

Type of Violation

Isolation Level Dirty Read Nonrepeatable Read Phantom

READ UNCOMMITTED Yes Yes Yes
READ COMMITTED No Yes Yes
REPEATABLE READ No No Yes
SERIALIZABLE No No No

2. Nonrepeatable read. A transaction T1 may read a given value from a table. If
another transaction T2 later updates that value and T1 reads that value again,
T1 will see a different value.

3. Phantoms. A transaction T1 may read a set of rows from a table, perhaps
based on some condition specified in the SQL WHERE-clause. Now suppose
that a transaction T2 inserts a new row that also satisfies the WHERE-clause
condition used in T1, into the table used by T1. If T1 is repeated, then T1 will
see a phantom, a row that previously did not exist.

Table 21.1 summarizes the possible violations for the different isolation levels. An
entry of Yes indicates that a violation is possible and an entry of No indicates that it
is not possible. READ UNCOMMITTED is the most forgiving, and SERIALIZABLE is
the most restrictive in that it avoids all three of the problems mentioned above.

A sample SQL transaction might look like the following:

EXEC SQL WHENEVER SQLERROR GOTO UNDO;
EXEC SQL SET TRANSACTION

READ WRITE
DIAGNOSTIC SIZE 5
ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno, Salary)
VALUES ('Robert', 'Smith', '991004321', 2, 35000);

EXEC SQL UPDATE EMPLOYEE
SET Salary = Salary * 1.1 WHERE Dno = 2;

EXEC SQL COMMIT;
GOTO THE_END;
UNDO: EXEC SQL ROLLBACK;
THE_END: ... ;

The above transaction consists of first inserting a new row in the EMPLOYEE table
and then updating the salary of all employees who work in department 2. If an error
occurs on any of the SQL statements, the entire transaction is rolled back. This
implies that any updated salary (by this transaction) would be restored to its previ-
ous value and that the newly inserted row would be removed.

As we have seen, SQL provides a number of transaction-oriented features. The DBA
or database programmers can take advantage of these options to try improving
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transaction performance by relaxing serializability if that is acceptable for their
applications.

21.7 Summary
In this chapter we discussed DBMS concepts for transaction processing. We intro-
duced the concept of a database transaction and the operations relevant to transac-
tion processing. We compared single-user systems to multiuser systems and then
presented examples of how uncontrolled execution of concurrent transactions in a
multiuser system can lead to incorrect results and database values. We also discussed
the various types of failures that may occur during transaction execution.

Next we introduced the typical states that a transaction passes through during execu-
tion, and discussed several concepts that are used in recovery and concurrency con-
trol methods. The system log keeps track of database accesses, and the system uses
this information to recover from failures. A transaction either succeeds and reaches
its commit point or it fails and has to be rolled back. A committed transaction has its
changes permanently recorded in the database. We presented an overview of the
desirable properties of transactions—atomicity, consistency preservation, isolation,
and durability—which are often referred to as the ACID properties.

Then we defined a schedule (or history) as an execution sequence of the operations
of several transactions with possible interleaving. We characterized schedules in
terms of their recoverability. Recoverable schedules ensure that, once a transaction
commits, it never needs to be undone. Cascadeless schedules add an additional con-
dition to ensure that no aborted transaction requires the cascading abort of other
transactions. Strict schedules provide an even stronger condition that allows a sim-
ple recovery scheme consisting of restoring the old values of items that have been
changed by an aborted transaction.

We defined equivalence of schedules and saw that a serializable schedule is equiva-
lent to some serial schedule. We defined the concepts of conflict equivalence and
view equivalence, which led to definitions for conflict serializability and view serial-
izability. A serializable schedule is considered correct. We presented an algorithm
for testing the (conflict) serializability of a schedule. We discussed why testing for
serializability is impractical in a real system, although it can be used to define and
verify concurrency control protocols, and we briefly mentioned less restrictive defi-
nitions of schedule equivalence. Finally, we gave a brief overview of how transaction
concepts are used in practice within SQL.

Review Questions
21.1. What is meant by the concurrent execution of database transactions in a

multiuser system? Discuss why concurrency control is needed, and give
informal examples.
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21.2. Discuss the different types of failures. What is meant by catastrophic failure?

21.3. Discuss the actions taken by the read_item and write_item operations on a
database.

21.4. Draw a state diagram and discuss the typical states that a transaction goes
through during execution.

21.5. What is the system log used for? What are the typical kinds of records in a
system log? What are transaction commit points, and why are they impor-
tant?

21.6. Discuss the atomicity, durability, isolation, and consistency preservation
properties of a database transaction.

21.7. What is a schedule (history)? Define the concepts of recoverable, cascadeless,
and strict schedules, and compare them in terms of their recoverability.

21.8. Discuss the different measures of transaction equivalence. What is the differ-
ence between conflict equivalence and view equivalence?

21.9. What is a serial schedule? What is a serializable schedule? Why is a serial
schedule considered correct? Why is a serializable schedule considered cor-
rect?

21.10. What is the difference between the constrained write and the unconstrained
write assumptions? Which is more realistic?

21.11. Discuss how serializability is used to enforce concurrency control in a data-
base system. Why is serializability sometimes considered too restrictive as a
measure of correctness for schedules?

21.12. Describe the four levels of isolation in SQL.

21.13. Define the violations caused by each of the following: dirty read, nonrepeat-
able read, and phantoms.

Exercises
21.14. Change transaction T2 in Figure 21.2(b) to read

read_item(X);
X := X + M;
if X > 90 then exit
else write_item(X);

Discuss the final result of the different schedules in Figure 21.3(a) and (b),
where M = 2 and N = 2, with respect to the following questions: Does adding
the above condition change the final outcome? Does the outcome obey the
implied consistency rule (that the capacity of X is 90)?

21.15. Repeat Exercise 21.14, adding a check in T1 so that Y does not exceed 90.
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21.16. Add the operation commit at the end of each of the transactions T1 and T2 in
Figure 21.2, and then list all possible schedules for the modified transactions.
Determine which of the schedules are recoverable, which are cascadeless,
and which are strict.

21.17. List all possible schedules for transactions T1 and T2 in Figure 21.2, and
determine which are conflict serializable (correct) and which are not.

21.18. How many serial schedules exist for the three transactions in Figure 21.8(a)?
What are they? What is the total number of possible schedules?

21.19. Write a program to create all possible schedules for the three transactions in
Figure 21.8(a), and to determine which of those schedules are conflict serial-
izable and which are not. For each conflict-serializable schedule, your pro-
gram should print the schedule and list all equivalent serial schedules.

21.20. Why is an explicit transaction end statement needed in SQL but not an
explicit begin statement?

21.21. Describe situations where each of the different isolation levels would be use-
ful for transaction processing.

21.22. Which of the following schedules is (conflict) serializable? For each serializ-
able schedule, determine the equivalent serial schedules.

a. r1(X); r3(X); w1(X); r2(X); w3(X);

b. r1(X); r3(X); w3(X); w1(X); r2(X);

c. r3(X); r2(X); w3(X); r1(X); w1(X);

d. r3(X); r2(X); r1(X); w3(X); w1(X);

21.23. Consider the three transactions T1, T2, and T3, and the schedules S1 and S2
given below. Draw the serializability (precedence) graphs for S1 and S2, and
state whether each schedule is serializable or not. If a schedule is serializable,
write down the equivalent serial schedule(s).

T1: r1 (X); r1 (Z); w1 (X);
T2: r2 (Z); r2 (Y); w2 (Z); w2 (Y);
T3: r3 (X); r3 (Y); w3 (Y);
S1: r1 (X); r2 (Z); r1 (Z); r3 (X); r3 (Y); w1 (X); w3 (Y); r2 (Y); w2 (Z); w2 (Y);
S2: r1 (X); r2 (Z); r3 (X); r1 (Z); r2 (Y); r3 (Y); w1 (X); w2 (Z); w3 (Y); w2 (Y);

21.24. Consider schedules S3, S4, and S5 below. Determine whether each schedule is
strict, cascadeless, recoverable, or nonrecoverable. (Determine the strictest
recoverability condition that each schedule satisfies.)

S3: r1 (X); r2 (Z); r1 (Z); r3 (X); r3 (Y); w1 (X); c1; w3 (Y); c3; r2 (Y); w2 (Z);
w2 (Y); c2;

S4: r1 (X); r2 (Z); r1 (Z); r3 (X); r3 (Y); w1 (X); w3 (Y); r2 (Y); w2 (Z); w2 (Y); c1;
c2; c3;

S5: r1 (X); r2 (Z); r3 (X); r1 (Z); r2 (Y); r3 (Y); w1 (X); c1; w2 (Z); w3 (Y); w2 (Y);
c3; c2;
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Concurrency Control 
Techniques

In this chapter we discuss a number of concurrency
control techniques that are used to ensure the nonin-

terference or isolation property of concurrently executing transactions. Most of
these techniques ensure serializability of schedules—which we defined in Section
21.5—using concurrency control protocols (sets of rules) that guarantee serializ-
ability. One important set of protocols—known as two-phase locking protocols—
employ the technique of locking data items to prevent multiple transactions from
accessing the items concurrently; a number of locking protocols are described in
Sections 22.1 and 22.3.2. Locking protocols are used in most commercial DBMSs.
Another set of concurrency control protocols use timestamps. A timestamp is a
unique identifier for each transaction, generated by the system. Timestamps values
are generated in the same order as the transaction start times. Concurrency control
protocols that use timestamp ordering to ensure serializability are introduced in
Section 22.2. In Section 22.3 we discuss multiversion concurrency control proto-
cols that use multiple versions of a data item. One multiversion protocol extends
timestamp order to multiversion timestamp ordering (Section 22.3.1), and another
extends two-phase locking (Section 22.3.2). In Section 22.4 we present a protocol
based on the concept of validation or certification of a transaction after it executes
its operations; these are sometimes called optimistic protocols, and also assume
that multiple versions of a data item can exist.

Another factor that affects concurrency control is the granularity of the data
items—that is, what portion of the database a data item represents. An item can be
as small as a single attribute (field) value or as large as a disk block, or even a whole
file or the entire database. We discuss granularity of items and a multiple granular-
ity concurrency control protocol, which is an extension of two-phase locking, in
Section 22.5. In Section 22.6 we describe concurrency control issues that arise when

22chapter 22
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indexes are used to process transactions, and in Section 22.7 we discuss some addi-
tional concurrency control concepts. Section 22.8 summarizes the chapter.

It is sufficient to read Sections 22.1, 22.5, 22.6, and 22.7, and possibly 22.3.2, if your
main interest is an introduction to the concurrency control techniques that are
based on locking, which are used most often in practice. The other techniques are
mainly of theoretical interest.

22.1 Two-Phase Locking Techniques 
for Concurrency Control

Some of the main techniques used to control concurrent execution of transactions
are based on the concept of locking data items. A lock is a variable associated with a
data item that describes the status of the item with respect to possible operations
that can be applied to it. Generally, there is one lock for each data item in the data-
base. Locks are used as a means of synchronizing the access by concurrent transac-
tions to the database items. In Section 22.1.1 we discuss the nature and types of
locks. Then, in Section 22.1.2 we present protocols that use locking to guarantee
serializability of transaction schedules. Finally, in Section 22.1.3 we describe two
problems associated with the use of locks—deadlock and starvation—and show
how these problems are handled in concurrency control protocols.

22.1.1 Types of Locks and System Lock Tables
Several types of locks are used in concurrency control. To introduce locking con-
cepts gradually, first we discuss binary locks, which are simple, but are also too
restrictive for database concurrency control purposes, and so are not used in practice.
Then we discuss shared/exclusive locks—also known as read/write locks—which
provide more general locking capabilities and are used in practical database locking
schemes. In Section 22.3.2 we describe an additional type of lock called a certify lock,
and show how it can be used to improve performance of locking protocols.

Binary Locks. A binary lock can have two states or values: locked and unlocked (or
1 and 0, for simplicity). A distinct lock is associated with each database item X. If the
value of the lock on X is 1, item X cannot be accessed by a database operation that
requests the item. If the value of the lock on X is 0, the item can be accessed when
requested, and the lock value is changed to 1. We refer to the current value (or state)
of the lock associated with item X as lock(X).

Two operations, lock_item and unlock_item, are used with binary locking. A transaction
requests access to an item X by first issuing a lock_item(X) operation. If LOCK(X) =
1, the transaction is forced to wait. If LOCK(X) = 0, it is set to 1 (the transaction locks
the item) and the transaction is allowed to access item X. When the transaction is
through using the item, it issues an unlock_item(X) operation, which sets LOCK(X)
back to 0 (unlocks the item) so that X may be accessed by other transactions. Hence,
a binary lock enforces mutual exclusion on the data item. A description of the
lock_item(X) and unlock_item(X) operations is shown in Figure 22.1.
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lock_item(X):
B: if LOCK(X) = 0 (* item is unlocked *)

then LOCK(X) ←1 (* lock the item *)
else

begin
wait (until LOCK(X) = 0

and the lock manager wakes up the transaction);
go to B
end;

unlock_item(X):
LOCK(X) ← 0; (* unlock the item *)
if any transactions are waiting

then wakeup one of the waiting transactions;

Figure 22.1
Lock and unlock oper-
ations for binary locks.

Notice that the lock_item and unlock_item operations must be implemented as indi-
visible units (known as critical sections in operating systems); that is, no interleav-
ing should be allowed once a lock or unlock operation is started until the operation
terminates or the transaction waits. In Figure 22.1, the wait command within the
lock_item(X) operation is usually implemented by putting the transaction in a wait-
ing queue for item X until X is unlocked and the transaction can be granted access
to it. Other transactions that also want to access X are placed in the same queue.
Hence, the wait command is considered to be outside the lock_item operation.

It is quite simple to implement a binary lock; all that is needed is a binary-valued
variable, LOCK, associated with each data item X in the database. In its simplest
form, each lock can be a record with three fields: <Data_item_name, LOCK,
Locking_transaction> plus a queue for transactions that are waiting to access the item.
The system needs to maintain only these records for the items that are currently locked
in a lock table, which could be organized as a hash file on the item name. Items not
in the lock table are considered to be unlocked. The DBMS has a lock manager sub-
system to keep track of and control access to locks.

If the simple binary locking scheme described here is used, every transaction must
obey the following rules:

1. A transaction T must issue the operation lock_item(X) before any
read_item(X) or write_item(X) operations are performed in T.

2. A transaction T must issue the operation unlock_item(X) after all read_item(X)
and write_item(X) operations are completed in T.

3. A transaction T will not issue a lock_item(X) operation if it already holds the
lock on item X.1

4. A transaction T will not issue an unlock_item(X) operation unless it already
holds the lock on item X.

1This rule may be removed if we modify the lock_item (X) operation in Figure 22.1 so that if the item is
currently locked by the requesting transaction, the lock is granted.
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These rules can be enforced by the lock manager module of the DBMS. Between the
lock_item(X) and unlock_item(X) operations in transaction T, T is said to hold the
lock on item X. At most one transaction can hold the lock on a particular item.
Thus no two transactions can access the same item concurrently.

Shared/Exclusive (or Read/Write) Locks. The preceding binary locking
scheme is too restrictive for database items because at most, one transaction can
hold a lock on a given item. We should allow several transactions to access the same
item X if they all access X for reading purposes only. This is because read operations
on the same item by different transactions are not conflicting (see Section 21.4.1).
However, if a transaction is to write an item X, it must have exclusive access to X. For
this purpose, a different type of lock called a multiple-mode lock is used. In this
scheme—called shared/exclusive or read/write locks—there are three locking
operations: read_lock(X), write_lock(X), and unlock(X). A lock associated with an
item X, LOCK(X), now has three possible states: read-locked, write-locked, or
unlocked. A read-locked item is also called share-locked because other transactions
are allowed to read the item, whereas a write-locked item is called exclusive-locked
because a single transaction exclusively holds the lock on the item.

One method for implementing the preceding operations on a read/write lock is to
keep track of the number of transactions that hold a shared (read) lock on an item
in the lock table. Each record in the lock table will have four fields: <Data_item_name,
LOCK, No_of_reads, Locking_transaction(s)>. Again, to save space, the system needs to
maintain lock records only for locked items in the lock table. The value (state) of
LOCK is either read-locked or write-locked, suitably coded (if we assume no records
are kept in the lock table for unlocked items). If LOCK(X)=write-locked, the value of
locking_transaction(s) is a single transaction that holds the exclusive (write) lock
on X. If LOCK(X)=read-locked, the value of locking transaction(s) is a list of one or
more transactions that hold the shared (read) lock on X. The three operations
read_lock(X), write_lock(X), and unlock(X) are described in Figure 22.2.2 As before,
each of the three locking operations should be considered indivisible; no interleav-
ing should be allowed once one of the operations is started until either the opera-
tion terminates by granting the lock or the transaction is placed in a waiting queue
for the item.

When we use the shared/exclusive locking scheme, the system must enforce the fol-
lowing rules:

1. A transaction T must issue the operation read_lock(X) or write_lock(X) before
any read_item(X) operation is performed in T.

2. A transaction T must issue the operation write_lock(X) before any
write_item(X) operation is performed in T.

2These algorithms do not allow upgrading or downgrading of locks, as described later in this section. The
reader can extend the algorithms to allow these additional operations.



read_lock(X):
B: if LOCK(X) = “unlocked”

then begin LOCK(X) ← “read-locked”;
no_of_reads(X) ← 1
end

else if LOCK(X) = “read-locked”
then no_of_reads(X) ← no_of_reads(X) + 1

else begin
wait (until LOCK(X) = “unlocked”

and the lock manager wakes up the transaction);
go to B
end;

write_lock(X):
B: if LOCK(X) = “unlocked”

then LOCK(X) ← “write-locked”
else begin

wait (until LOCK(X) = “unlocked”
and the lock manager wakes up the transaction);

go to B
end;

unlock (X):
if LOCK(X) = “write-locked”

then begin LOCK(X) ← “unlocked”;
wakeup one of the waiting transactions, if any
end

else it LOCK(X) = “read-locked”
then begin

no_of_reads(X) ← no_of_reads(X) −1;
if no_of_reads(X) = 0

then begin LOCK(X) = “unlocked”;
wakeup one of the waiting transactions, if any
end

end;
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Figure 22.2
Locking and unlocking
operations for two-
mode (read-write or
shared-exclusive)
locks.

3. A transaction T must issue the operation unlock(X) after all read_item(X) and
write_item(X) operations are completed in T.3

4. A transaction T will not issue a read_lock(X) operation if it already holds a
read (shared) lock or a write (exclusive) lock on item X. This rule may be
relaxed, as we discuss shortly.

3This rule may be relaxed to allow a transaction to unlock an item, then lock it again later.
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5. A transaction T will not issue a write_lock(X) operation if it already holds a
read (shared) lock or write (exclusive) lock on item X. This rule may also be
relaxed, as we discuss shortly.

6. A transaction T will not issue an unlock(X) operation unless it already holds
a read (shared) lock or a write (exclusive) lock on item X.

Conversion of Locks. Sometimes it is desirable to relax conditions 4 and 5 in the
preceding list in order to allow lock conversion; that is, a transaction that already
holds a lock on item X is allowed under certain conditions to convert the lock from
one locked state to another. For example, it is possible for a transaction T to issue a
read_lock(X) and then later to upgrade the lock by issuing a write_lock(X) operation.
If T is the only transaction holding a read lock on X at the time it issues the
write_lock(X) operation, the lock can be upgraded; otherwise, the transaction must
wait. It is also possible for a transaction T to issue a write_lock(X) and then later to
downgrade the lock by issuing a read_lock(X) operation. When upgrading and
downgrading of locks is used, the lock table must include transaction identifiers in
the record structure for each lock (in the locking_transaction(s) field) to store the
information on which transactions hold locks on the item. The descriptions of the
read_lock(X) and write_lock(X) operations in Figure 22.2 must be changed appropri-
ately to allow for lock upgrading and downgrading. We leave this as an exercise for
the reader.

Using binary locks or read/write locks in transactions, as described earlier, does not
guarantee serializability of schedules on its own. Figure 22.3 shows an example
where the preceding locking rules are followed but a nonserializable schedule may
result. This is because in Figure 22.3(a) the items Y in T1 and X in T2 were unlocked
too early. This allows a schedule such as the one shown in Figure 22.3(c) to occur,
which is not a serializable schedule and hence gives incorrect results. To guarantee
serializability, we must follow an additional protocol concerning the positioning of
locking and unlocking operations in every transaction. The best-known protocol,
two-phase locking, is described in the next section.

22.1.2 Guaranteeing Serializability by Two-Phase Locking
A transaction is said to follow the two-phase locking protocol if all locking opera-
tions (read_lock, write_lock) precede the first unlock operation in the transaction.4

Such a transaction can be divided into two phases: an expanding or growing (first)
phase, during which new locks on items can be acquired but none can be released;
and a shrinking (second) phase, during which existing locks can be released but no
new locks can be acquired. If lock conversion is allowed, then upgrading of locks
(from read-locked to write-locked) must be done during the expanding phase, and
downgrading of locks (from write-locked to read-locked) must be done in the

4This is unrelated to the two-phase commit protocol for recovery in distributed databases (see Chapter
25).
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(a) T1
Initial values: X=20, Y=30

Result serial schedule T1

followed by T2: X=50, Y=80

Result of serial schedule T2

followed by T1: X=70, Y=50

read_lock(Y );
read_item(Y );
unlock(Y );
write_lock(X );
read_item(X );
X := X + Y;
write_item(X );
unlock(X );

write_lock(X );
read_item(X );
X := X + Y;
write_item(X );
unlock(X );

read_lock(X );
read_item(X );
unlock(X );
write_lock(Y );
read_item(Y );
Y := X + Y;
write_item(Y );
unlock(Y );

read_lock(X );
read_item(X );
unlock(X );
write_lock(Y );
read_item(Y );
Y := X + Y;
write_item(Y );
unlock(Y );

(b)

(c)

Time

read_lock(Y );
read_item(Y );
unlock(Y );

Result of schedule S:
X=50, Y=50
(nonserializable)

T2

T1 T2

Figure 22.3
Transactions that do not obey two-phase lock-
ing. (a) Two transactions T1 and T2. (b) Results
of possible serial schedules of T1 and T2. (c) A
nonserializable schedule S that uses locks.

shrinking phase. Hence, a read_lock(X) operation that downgrades an already held
write lock on X can appear only in the shrinking phase.

Transactions T1 and T2 in Figure 22.3(a) do not follow the two-phase locking proto-
col because the write_lock(X) operation follows the unlock(Y) operation in T1, and
similarly the write_lock(Y) operation follows the unlock(X) operation in T2. If we
enforce two-phase locking, the transactions can be rewritten as T1� and T2�, as
shown in Figure 22.4. Now, the schedule shown in Figure 22.3(c) is not permitted
for T1� and T2� (with their modified order of locking and unlocking operations)
under the rules of locking described in Section 22.1.1 because T1� will issue its
write_lock(X) before it unlocks item Y; consequently, when T2� issues its read_lock(X),
it is forced to wait until T1� releases the lock by issuing an unlock (X) in the schedule.



784 Chapter 22 Concurrency Control Techniques

read_lock(Y );
read_item(Y );
write_lock(X );
unlock(Y )
read_item(X );
X := X + Y;
write_item(X );
unlock(X );

read_lock(X );
read_item(X );
write_lock(Y );
unlock(X )
read_item(Y );
Y := X + Y;
write_item(Y );
unlock(Y );

T1� T2�

Figure 22.4
Transactions T1� and T2�, which are the
same as T1 and T2 in Figure 22.3, but
follow the two-phase locking protocol.
Note that they can produce a deadlock.

It can be proved that, if every transaction in a schedule follows the two-phase lock-
ing protocol, the schedule is guaranteed to be serializable, obviating the need to test
for serializability of schedules. The locking protocol, by enforcing two-phase lock-
ing rules, also enforces serializability.

Two-phase locking may limit the amount of concurrency that can occur in a sched-
ule because a transaction T may not be able to release an item X after it is through
using it if T must lock an additional item Y later; or conversely, T must lock the
additional item Y before it needs it so that it can release X. Hence, X must remain
locked by T until all items that the transaction needs to read or write have been
locked; only then can X be released by T. Meanwhile, another transaction seeking to
access X may be forced to wait, even though T is done with X; conversely, if Y is
locked earlier than it is needed, another transaction seeking to access Y is forced to
wait even though T is not using Y yet. This is the price for guaranteeing serializabil-
ity of all schedules without having to check the schedules themselves.

Although the two-phase locking protocol guarantees serializability (that is, every
schedule that is permitted is serializable), it does not permit all possible serializable
schedules (that is, some serializable schedules will be prohibited by the protocol).

Basic, Conservative, Strict, and Rigorous Two-Phase Locking. There are a
number of variations of two-phase locking (2PL). The technique just described is
known as basic 2PL. A variation known as conservative 2PL (or static 2PL)
requires a transaction to lock all the items it accesses before the transaction begins
execution, by predeclaring its read-set and write-set. Recall from Section 21.1.2 that
the read-set of a transaction is the set of all items that the transaction reads, and the
write-set is the set of all items that it writes. If any of the predeclared items needed
cannot be locked, the transaction does not lock any item; instead, it waits until all
the items are available for locking. Conservative 2PL is a deadlock-free protocol, as
we will see in Section 22.1.3 when we discuss the deadlock problem. However, it is
difficult to use in practice because of the need to predeclare the read-set and write-
set, which is not possible in many situations.

In practice, the most popular variation of 2PL is strict 2PL, which guarantees strict
schedules (see Section 21.4). In this variation, a transaction T does not release any of
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its exclusive (write) locks until after it commits or aborts. Hence, no other transac-
tion can read or write an item that is written by T unless T has committed, leading
to a strict schedule for recoverability. Strict 2PL is not deadlock-free. A more restric-
tive variation of strict 2PL is rigorous 2PL, which also guarantees strict schedules.
In this variation, a transaction T does not release any of its locks (exclusive or
shared) until after it commits or aborts, and so it is easier to implement than strict
2PL. Notice the difference between conservative and rigorous 2PL: the former must
lock all its items before it starts, so once the transaction starts it is in its shrinking
phase; the latter does not unlock any of its items until after it terminates (by com-
mitting or aborting), so the transaction is in its expanding phase until it ends.

In many cases, the concurrency control subsystem itself is responsible for generat-
ing the read_lock and write_lock requests. For example, suppose the system is to
enforce the strict 2PL protocol. Then, whenever transaction T issues a read_item(X),
the system calls the read_lock(X) operation on behalf of T. If the state of LOCK(X) is
write_locked by some other transaction T�, the system places T in the waiting queue
for item X; otherwise, it grants the read_lock(X) request and permits the
read_item(X) operation of T to execute. On the other hand, if transaction T issues a
write_item(X), the system calls the write_lock(X) operation on behalf of T. If the state
of LOCK(X) is write_locked or read_locked by some other transaction T�, the system
places T in the waiting queue for item X; if the state of LOCK(X) is read_locked and
T itself is the only transaction holding the read lock on X, the system upgrades the
lock to write_locked and permits the write_item(X) operation by T. Finally, if the
state of LOCK(X) is unlocked, the system grants the write_lock(X) request and per-
mits the write_item(X) operation to execute. After each action, the system must
update its lock table appropriately.

The use of locks can cause two additional problems: deadlock and starvation. We
discuss these problems and their solutions in the next section.

22.1.3 Dealing with Deadlock and Starvation
Deadlock occurs when each transaction T in a set of two or more transactions is
waiting for some item that is locked by some other transaction T� in the set. Hence,
each transaction in the set is in a waiting queue, waiting for one of the other trans-
actions in the set to release the lock on an item. But because the other transaction is
also waiting, it will never release the lock. A simple example is shown in Figure
22.5(a), where the two transactions T1�and T2�are deadlocked in a partial schedule;
T1� is in the waiting queue for X, which is locked by T2�, while T2� is in the waiting
queue for Y, which is locked by T1�. Meanwhile, neither T1� nor T2� nor any other
transaction can access items X and Y.

Deadlock Prevention Protocols. One way to prevent deadlock is to use a
deadlock prevention protocol.5 One deadlock prevention protocol, which is used

5These protocols are not generally used in practice, either because of unrealistic assumptions or
because of their possible overhead. Deadlock detection and timeouts (covered in the following sections)
are more practical.
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Figure 22.5
Illustrating the deadlock problem. (a) A partial schedule of T1� and T2� that is
in a state of deadlock. (b) A wait-for graph for the partial schedule in (a).

in conservative two-phase locking, requires that every transaction lock all the items
it needs in advance (which is generally not a practical assumption)—if any of the
items cannot be obtained, none of the items are locked. Rather, the transaction waits
and then tries again to lock all the items it needs. Obviously this solution further
limits concurrency. A second protocol, which also limits concurrency, involves
ordering all the items in the database and making sure that a transaction that needs
several items will lock them according to that order. This requires that the program-
mer (or the system) is aware of the chosen order of the items, which is also not prac-
tical in the database context.

A number of other deadlock prevention schemes have been proposed that make a
decision about what to do with a transaction involved in a possible deadlock situa-
tion: Should it be blocked and made to wait or should it be aborted, or should the
transaction preempt and abort another transaction? Some of these techniques use
the concept of transaction timestamp TS(T), which is a unique identifier assigned
to each transaction. The timestamps are typically based on the order in which trans-
actions are started; hence, if transaction T1 starts before transaction T2, then TS(T1)
< TS(T2). Notice that the older transaction (which starts first) has the smaller time-
stamp value. Two schemes that prevent deadlock are called wait-die and wound-
wait. Suppose that transaction Ti tries to lock an item X but is not able to because X
is locked by some other transaction Tj with a conflicting lock. The rules followed by
these schemes are:

■ Wait-die. If TS(Ti) < TS(Tj), then (Ti older than Tj) Ti is allowed to wait;
otherwise (Ti younger than Tj) abort Ti (Ti dies) and restart it later with the
same timestamp.

■ Wound-wait. If TS(Ti) < TS(Tj), then (Ti older than Tj) abort Tj (Ti wounds
Tj) and restart it later with the same timestamp; otherwise (Ti younger than
Tj) Ti is allowed to wait.

In wait-die, an older transaction is allowed to wait for a younger transaction, whereas
a younger transaction requesting an item held by an older transaction is aborted
and restarted. The wound-wait approach does the opposite: A younger transaction
is allowed to wait for an older one, whereas an older transaction requesting an item
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held by a younger transaction preempts the younger transaction by aborting it. Both
schemes end up aborting the younger of the two transactions (the transaction that
started later) that may be involved in a deadlock, assuming that this will waste less
processing. It can be shown that these two techniques are deadlock-free, since in
wait-die, transactions only wait for younger transactions so no cycle is created.
Similarly, in wound-wait, transactions only wait for older transactions so no cycle is
created. However, both techniques may cause some transactions to be aborted and
restarted needlessly, even though those transactions may never actually cause a
deadlock.

Another group of protocols that prevent deadlock do not require timestamps. These
include the no waiting (NW) and cautious waiting (CW) algorithms. In the no
waiting algorithm, if a transaction is unable to obtain a lock, it is immediately
aborted and then restarted after a certain time delay without checking whether a
deadlock will actually occur or not. In this case, no transaction ever waits, so no
deadlock will occur. However, this scheme can cause transactions to abort and
restart needlessly. The cautious waiting algorithm was proposed to try to reduce the
number of needless aborts/restarts. Suppose that transaction Ti tries to lock an item
X but is not able to do so because X is locked by some other transaction Tj with a
conflicting lock. The cautious waiting rules are as follows:

■ Cautious waiting. If Tj is not blocked (not waiting for some other locked
item), then Ti is blocked and allowed to wait; otherwise abort Ti.

It can be shown that cautious waiting is deadlock-free, because no transaction will
ever wait for another blocked transaction. By considering the time b(T) at which
each blocked transaction T was blocked, if the two transactions Ti and Tj above both
become blocked, and Ti is waiting for Tj, then b(Ti) < b(Tj), since Ti can only wait
for Tj at a time when Tj is not blocked itself. Hence, the blocking times form a total
ordering on all blocked transactions, so no cycle that causes deadlock can occur.

Deadlock Detection. A second, more practical approach to dealing with deadlock
is deadlock detection, where the system checks if a state of deadlock actually exists.
This solution is attractive if we know there will be little interference among the
transactions—that is, if different transactions will rarely access the same items at the
same time. This can happen if the transactions are short and each transaction locks
only a few items, or if the transaction load is light. On the other hand, if transac-
tions are long and each transaction uses many items, or if the transaction load is
quite heavy, it may be advantageous to use a deadlock prevention scheme.

A simple way to detect a state of deadlock is for the system to construct and main-
tain a wait-for graph. One node is created in the wait-for graph for each transaction
that is currently executing. Whenever a transaction Ti is waiting to lock an item X
that is currently locked by a transaction Tj, a directed edge (Ti → Tj) is created in
the wait-for graph. When Tj releases the lock(s) on the items that Ti was waiting
for, the directed edge is dropped from the wait-for graph. We have a state of dead-
lock if and only if the wait-for graph has a cycle. One problem with this approach is
the matter of determining when the system should check for a deadlock. One possi-
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bility is to check for a cycle every time an edge is added to the wait-for graph, but
this may cause excessive overhead. Criteria such as the number of currently execut-
ing transactions or the period of time several transactions have been waiting to lock
items may be used instead to check for a cycle. Figure 22.5(b) shows the wait-for
graph for the (partial) schedule shown in Figure 22.5(a).

If the system is in a state of deadlock, some of the transactions causing the deadlock
must be aborted. Choosing which transactions to abort is known as victim selec-
tion. The algorithm for victim selection should generally avoid selecting transac-
tions that have been running for a long time and that have performed many
updates, and it should try instead to select transactions that have not made many
changes (younger transactions).

Timeouts. Another simple scheme to deal with deadlock is the use of timeouts.
This method is practical because of its low overhead and simplicity. In this method,
if a transaction waits for a period longer than a system-defined timeout period, the
system assumes that the transaction may be deadlocked and aborts it—regardless of
whether a deadlock actually exists or not.

Starvation. Another problem that may occur when we use locking is starvation,
which occurs when a transaction cannot proceed for an indefinite period of time
while other transactions in the system continue normally. This may occur if the
waiting scheme for locked items is unfair, giving priority to some transactions over
others. One solution for starvation is to have a fair waiting scheme, such as using a
first-come-first-served queue; transactions are enabled to lock an item in the order
in which they originally requested the lock. Another scheme allows some transac-
tions to have priority over others but increases the priority of a transaction the
longer it waits, until it eventually gets the highest priority and proceeds. Starvation
can also occur because of victim selection if the algorithm selects the same transac-
tion as victim repeatedly, thus causing it to abort and never finish execution. The
algorithm can use higher priorities for transactions that have been aborted multiple
times to avoid this problem. The wait-die and wound-wait schemes discussed previ-
ously avoid starvation, because they restart a transaction that has been aborted with
its same original timestamp, so the possibility that the same transaction is aborted
repeatedly is slim.

22.2 Concurrency Control Based 
on Timestamp Ordering

The use of locks, combined with the 2PL protocol, guarantees serializability of
schedules. The serializable schedules produced by 2PL have their equivalent serial
schedules based on the order in which executing transactions lock the items they
acquire. If a transaction needs an item that is already locked, it may be forced to wait
until the item is released. Some transactions may be aborted and restarted because
of the deadlock problem. A different approach that guarantees serializability
involves using transaction timestamps to order transaction execution for an equiva-
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lent serial schedule. In Section 22.2.1 we discuss timestamps, and in Section 22.2.2
we discuss how serializability is enforced by ordering transactions based on their
timestamps.

22.2.1 Timestamps
Recall that a timestamp is a unique identifier created by the DBMS to identify a
transaction. Typically, timestamp values are assigned in the order in which the
transactions are submitted to the system, so a timestamp can be thought of as the
transaction start time. We will refer to the timestamp of transaction T as TS(T).
Concurrency control techniques based on timestamp ordering do not use locks;
hence, deadlocks cannot occur.

Timestamps can be generated in several ways. One possibility is to use a counter that
is incremented each time its value is assigned to a transaction. The transaction time-
stamps are numbered 1, 2, 3, ... in this scheme. A computer counter has a finite max-
imum value, so the system must periodically reset the counter to zero when no
transactions are executing for some short period of time. Another way to implement
timestamps is to use the current date/time value of the system clock and ensure that
no two timestamp values are generated during the same tick of the clock.

22.2.2 The Timestamp Ordering Algorithm
The idea for this scheme is to order the transactions based on their timestamps. A
schedule in which the transactions participate is then serializable, and the only
equivalent serial schedule permitted has the transactions in order of their timestamp
values. This is called timestamp ordering (TO). Notice how this differs from 2PL,
where a schedule is serializable by being equivalent to some serial schedule allowed
by the locking protocols. In timestamp ordering, however, the schedule is equivalent
to the particular serial order corresponding to the order of the transaction time-
stamps. The algorithm must ensure that, for each item accessed by conflicting opera-
tions in the schedule, the order in which the item is accessed does not violate the
timestamp order. To do this, the algorithm associates with each database item X two
timestamp (TS) values:

1. read_TS(X). The read timestamp of item X is the largest timestamp among
all the timestamps of transactions that have successfully read item X—that
is, read_TS(X) = TS(T), where T is the youngest transaction that has read X
successfully.

2. write_TS(X). The write timestamp of item X is the largest of all the time-
stamps of transactions that have successfully written item X—that is,
write_TS(X) = TS(T), where T is the youngest transaction that has written X
successfully.

Basic Timestamp Ordering (TO). Whenever some transaction T tries to issue a
read_item(X) or a write_item(X) operation, the basic TO algorithm compares the
timestamp of T with read_TS(X) and write_TS(X) to ensure that the timestamp
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order of transaction execution is not violated. If this order is violated, then transac-
tion T is aborted and resubmitted to the system as a new transaction with a new
timestamp. If T is aborted and rolled back, any transaction T1 that may have used a
value written by T must also be rolled back. Similarly, any transaction T2 that may
have used a value written by T1 must also be rolled back, and so on. This effect is
known as cascading rollback and is one of the problems associated with basic TO,
since the schedules produced are not guaranteed to be recoverable. An additional
protocol must be enforced to ensure that the schedules are recoverable, cascadeless,
or strict. We first describe the basic TO algorithm here. The concurrency control
algorithm must check whether conflicting operations violate the timestamp order-
ing in the following two cases:

1. Whenever a transaction T issues a write_item(X) operation, the following is
checked:

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back
T and reject the operation. This should be done because some younger
transaction with a timestamp greater than TS(T)—and hence after T in
the timestamp ordering—has already read or written the value of item X
before T had a chance to write X, thus violating the timestamp ordering.

b. If the condition in part (a) does not occur, then execute the write_item(X)
operation of T and set write_TS(X) to TS(T).

2. Whenever a transaction T issues a read_item(X) operation, the following is
checked:

a. If write_TS(X) > TS(T), then abort and roll back T and reject the opera-
tion. This should be done because some younger transaction with time-
stamp greater than TS(T)—and hence after T in the timestamp
ordering—has already written the value of item X before T had a chance
to read X.

b. If write_TS(X) ≤ TS(T), then execute the read_item(X) operation of T and
set read_TS(X) to the larger of TS(T) and the current read_TS(X).

Whenever the basic TO algorithm detects two conflicting operations that occur in the
incorrect order, it rejects the later of the two operations by aborting the transaction
that issued it. The schedules produced by basic TO are hence guaranteed to be
conflict serializable, like the 2PL protocol. However, some schedules are possible
under each protocol that are not allowed under the other. Thus, neither protocol
allows all possible serializable schedules. As mentioned earlier, deadlock does not
occur with timestamp ordering. However, cyclic restart (and hence starvation) may
occur if a transaction is continually aborted and restarted.

Strict Timestamp Ordering (TO). A variation of basic TO called strict TO
ensures that the schedules are both strict (for easy recoverability) and (conflict)
serializable. In this variation, a transaction T that issues a read_item(X) or
write_item(X) such that TS(T) > write_TS(X) has its read or write operation delayed
until the transaction T� that wrote the value of X (hence TS(T�) = write_TS(X)) has
committed or aborted. To implement this algorithm, it is necessary to simulate the
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locking of an item X that has been written by transaction T� until T� is either com-
mitted or aborted. This algorithm does not cause deadlock, since T waits for T� only
if TS(T) > TS(T�).

Thomas’s Write Rule. A modification of the basic TO algorithm, known as
Thomas’s write rule, does not enforce conflict serializability, but it rejects fewer
write operations by modifying the checks for the write_item(X) operation as 
follows:

1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

2. If write_TS(X) > TS(T), then do not execute the write operation but continue
processing. This is because some transaction with timestamp greater than
TS(T)—and hence after T in the timestamp ordering—has already written
the value of X. Thus, we must ignore the write_item(X) operation of T
because it is already outdated and obsolete. Notice that any conflict arising
from this situation would be detected by case (1).

3. If neither the condition in part (1) nor the condition in part (2) occurs, then
execute the write_item(X) operation of T and set write_TS(X) to TS(T).

22.3 Multiversion Concurrency 
Control Techniques

Other protocols for concurrency control keep the old values of a data item when the
item is updated. These are known as multiversion concurrency control, because
several versions (values) of an item are maintained. When a transaction requires
access to an item, an appropriate version is chosen to maintain the serializability of
the currently executing schedule, if possible. The idea is that some read operations
that would be rejected in other techniques can still be accepted by reading an older
version of the item to maintain serializability. When a transaction writes an item, it
writes a new version and the old version(s) of the item are retained. Some multiver-
sion concurrency control algorithms use the concept of view serializability rather
than conflict serializability.

An obvious drawback of multiversion techniques is that more storage is needed to
maintain multiple versions of the database items. However, older versions may have
to be maintained anyway—for example, for recovery purposes. In addition, some
database applications require older versions to be kept to maintain a history of the
evolution of data item values. The extreme case is a temporal database (see Secton
26.2), which keeps track of all changes and the times at which they occurred. In such
cases, there is no additional storage penalty for multiversion techniques, since older
versions are already maintained.

Several multiversion concurrency control schemes have been proposed. We discuss
two schemes here, one based on timestamp ordering and the other based on 2PL. In
addition, the validation concurrency control method (see Section 22.4) also main-
tains multiple versions.
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22.3.1 Multiversion Technique Based on Timestamp Ordering
In this method, several versions X1, X2, ..., Xk of each data item X are maintained.
For each version, the value of version Xi and the following two timestamps are kept:

1. read_TS(Xi). The read timestamp of Xi is the largest of all the timestamps of
transactions that have successfully read version Xi.

2. write_TS(Xi). The write timestamp of Xi is the timestamp of the transac-
tion that wrote the value of version Xi.

Whenever a transaction T is allowed to execute a write_item(X) operation, a new ver-
sion Xk+1 of item X is created, with both the write_TS(Xk+1) and the read_TS(Xk+1)
set to TS(T). Correspondingly, when a transaction T is allowed to read the value of
version Xi, the value of read_TS(Xi) is set to the larger of the current read_TS(Xi) and
TS(T).

To ensure serializability, the following rules are used:

1. If transaction T issues a write_item(X) operation, and version i of X has the
highest write_TS(Xi) of all versions of X that is also less than or equal to TS(T),
and read_TS(Xi) > TS(T), then abort and roll back transaction T; otherwise,
create a new version Xj of X with read_TS(Xj) = write_TS(Xj) = TS(T).

2. If transaction T issues a read_item(X) operation, find the version i of X that
has the highest write_TS(Xi) of all versions of X that is also less than or equal
to TS(T); then return the value of Xi to transaction T, and set the value of
read_TS(Xi) to the larger of TS(T) and the current read_TS(Xi).

As we can see in case 2, a read_item(X) is always successful, since it finds the appro-
priate version Xi to read based on the write_TS of the various existing versions of X.
In case 1, however, transaction T may be aborted and rolled back. This happens if T
attempts to write a version of X that should have been read by another transaction
T� whose timestamp is read_TS(Xi); however, T� has already read version Xi, which
was written by the transaction with timestamp equal to write_TS(Xi). If this conflict
occurs, T is rolled back; otherwise, a new version of X, written by transaction T, is
created. Notice that if T is rolled back, cascading rollback may occur. Hence, to
ensure recoverability, a transaction T should not be allowed to commit until after all
the transactions that have written some version that T has read have committed.

22.3.2 Multiversion Two-Phase Locking Using Certify Locks
In this multiple-mode locking scheme, there are three locking modes for an item:
read, write, and certify, instead of just the two modes (read, write) discussed previ-
ously. Hence, the state of LOCK(X) for an item X can be one of read-locked, write-
locked, certify-locked, or unlocked. In the standard locking scheme, with only read
and write locks (see Section 22.1.1), a write lock is an exclusive lock. We can
describe the relationship between read and write locks in the standard scheme by
means of the lock compatibility table shown in Figure 22.6(a). An entry of Yes
means that if a transaction T holds the type of lock specified in the column header
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Figure 22.6
Lock compatibility tables.
(a) A compatibility table for
read/write locking scheme.
(b) A compatibility table for
read/write/certify locking
scheme.

on item X and if transaction T� requests the type of lock specified in the row header
on the same item X, then T� can obtain the lock because the locking modes are com-
patible. On the other hand, an entry of No in the table indicates that the locks are
not compatible, so T� must wait until T releases the lock.

In the standard locking scheme, once a transaction obtains a write lock on an item,
no other transactions can access that item. The idea behind multiversion 2PL is to
allow other transactions T� to read an item X while a single transaction T holds a
write lock on X. This is accomplished by allowing two versions for each item X; one
version must always have been written by some committed transaction. The second
version X� is created when a transaction T acquires a write lock on the item. Other
transactions can continue to read the committed version of X while T holds the write
lock. Transaction T can write the value of X� as needed, without affecting the value
of the committed version X. However, once T is ready to commit, it must obtain a
certify lock on all items that it currently holds write locks on before it can commit.
The certify lock is not compatible with read locks, so the transaction may have to
delay its commit until all its write-locked items are released by any reading transac-
tions in order to obtain the certify locks. Once the certify locks—which are exclusive
locks—are acquired, the committed version X of the data item is set to the value of
version X�, version X� is discarded, and the certify locks are then released. The lock
compatibility table for this scheme is shown in Figure 22.6(b).

In this multiversion 2PL scheme, reads can proceed concurrently with a single write
operation—an arrangement not permitted under the standard 2PL schemes. The
cost is that a transaction may have to delay its commit until it obtains exclusive cer-
tify locks on all the items it has updated. It can be shown that this scheme avoids cas-
cading aborts, since transactions are only allowed to read the version X that was
written by a committed transaction. However, deadlocks may occur if upgrading of
a read lock to a write lock is allowed, and these must be handled by variations of the
techniques discussed in Section 22.1.3.
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22.4 Validation (Optimistic) Concurrency
Control Techniques

In all the concurrency control techniques we have discussed so far, a certain degree
of checking is done before a database operation can be executed. For example, in
locking, a check is done to determine whether the item being accessed is locked. In
timestamp ordering, the transaction timestamp is checked against the read and
write timestamps of the item. Such checking represents overhead during transac-
tion execution, with the effect of slowing down the transactions.

In optimistic concurrency control techniques, also known as validation or
certification techniques, no checking is done while the transaction is executing.
Several theoretical concurrency control methods are based on the validation tech-
nique. We will describe only one scheme here. In this scheme, updates in the trans-
action are not applied directly to the database items until the transaction reaches its
end. During transaction execution, all updates are applied to local copies of the data
items that are kept for the transaction.6 At the end of transaction execution, a
validation phase checks whether any of the transaction’s updates violate serializ-
ability. Certain information needed by the validation phase must be kept by the sys-
tem. If serializability is not violated, the transaction is committed and the database
is updated from the local copies; otherwise, the transaction is aborted and then
restarted later.

There are three phases for this concurrency control protocol:

1. Read phase. A transaction can read values of committed data items from the
database. However, updates are applied only to local copies (versions) of the
data items kept in the transaction workspace.

2. Validation phase. Checking is performed to ensure that serializability will
not be violated if the transaction updates are applied to the database.

3. Write phase. If the validation phase is successful, the transaction updates are
applied to the database; otherwise, the updates are discarded and the trans-
action is restarted.

The idea behind optimistic concurrency control is to do all the checks at once;
hence, transaction execution proceeds with a minimum of overhead until the vali-
dation phase is reached. If there is little interference among transactions, most will
be validated successfully. However, if there is much interference, many transactions
that execute to completion will have their results discarded and must be restarted
later. Under these circumstances, optimistic techniques do not work well. The tech-
niques are called optimistic because they assume that little interference will occur
and hence that there is no need to do checking during transaction execution.

The optimistic protocol we describe uses transaction timestamps and also requires
that the write_sets and read_sets of the transactions be kept by the system.
Additionally, start and end times for some of the three phases need to be kept for

6Note that this can be considered as keeping multiple versions of items!
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each transaction. Recall that the write_set of a transaction is the set of items it writes,
and the read_set is the set of items it reads. In the validation phase for transaction Ti,
the protocol checks that Ti does not interfere with any committed transactions or
with any other transactions currently in their validation phase. The validation phase
for Ti checks that, for each such transaction Tj that is either committed or is in its
validation phase, one of the following conditions holds:

1. Transaction Tj completes its write phase before Ti starts its read phase.

2. Ti starts its write phase after Tj completes its write phase, and the read_set
of Ti has no items in common with the write_set of Tj.

3. Both the read_set and write_set of Ti have no items in common with the
write_set of Tj, and Tj completes its read phase before Ti completes its read
phase.

When validating transaction Ti, the first condition is checked first for each transac-
tion Tj, since (1) is the simplest condition to check. Only if condition 1 is false is
condition 2 checked, and only if (2) is false is condition 3—the most complex to
evaluate—checked. If any one of these three conditions holds, there is no interfer-
ence and Ti is validated successfully. If none of these three conditions holds, the val-
idation of transaction Ti fails and it is aborted and restarted later because
interference may have occurred.

22.5 Granularity of Data Items and Multiple
Granularity Locking

All concurrency control techniques assume that the database is formed of a number
of named data items. A database item could be chosen to be one of the following:

■ A database record

■ A field value of a database record

■ A disk block

■ A whole file

■ The whole database

The granularity can affect the performance of concurrency control and recovery. In
Section 22.5.1, we discuss some of the tradeoffs with regard to choosing the granu-
larity level used for locking, and in Section 22.5.2 we discuss a multiple granularity
locking scheme, where the granularity level (size of the data item) may be changed
dynamically.

22.5.1 Granularity Level Considerations for Locking
The size of data items is often called the data item granularity. Fine granularity
refers to small item sizes, whereas coarse granularity refers to large item sizes. Several
tradeoffs must be considered in choosing the data item size. We will discuss data
item size in the context of locking, although similar arguments can be made for
other concurrency control techniques.
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for illustrating multiple
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locking.

First, notice that the larger the data item size is, the lower the degree of concurrency
permitted. For example, if the data item size is a disk block, a transaction T that
needs to lock a record B must lock the whole disk block X that contains B because a
lock is associated with the whole data item (block). Now, if another transaction S
wants to lock a different record C that happens to reside in the same block X in a
conflicting lock mode, it is forced to wait. If the data item size was a single record,
transaction S would be able to proceed, because it would be locking a different data
item (record).

On the other hand, the smaller the data item size is, the more the number of items
in the database. Because every item is associated with a lock, the system will have a
larger number of active locks to be handled by the lock manager. More lock and
unlock operations will be performed, causing a higher overhead. In addition, more
storage space will be required for the lock table. For timestamps, storage is required
for the read_TS and write_TS for each data item, and there will be similar overhead
for handling a large number of items.

Given the above tradeoffs, an obvious question can be asked: What is the best item
size? The answer is that it depends on the types of transactions involved. If a typical
transaction accesses a small number of records, it is advantageous to have the data
item granularity be one record. On the other hand, if a transaction typically accesses
many records in the same file, it may be better to have block or file granularity so
that the transaction will consider all those records as one (or a few) data items.

22.5.2 Multiple Granularity Level Locking
Since the best granularity size depends on the given transaction, it seems appropri-
ate that a database system should support multiple levels of granularity, where the
granularity level can be different for various mixes of transactions. Figure 22.7
shows a simple granularity hierarchy with a database containing two files, each file
containing several disk pages, and each page containing several records. This can be
used to illustrate a multiple granularity level 2PL protocol, where a lock can be
requested at any level. However, additional types of locks will be needed to support
such a protocol efficiently.
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Consider the following scenario, with only shared and exclusive lock types, that refers
to the example in Figure 22.7. Suppose transaction T1 wants to update all the records
in file f1, and T1 requests and is granted an exclusive lock for f1. Then all of f1’s pages
(p11 through p1n)—and the records contained on those pages—are locked in exclu-
sive mode. This is beneficial for T1 because setting a single file-level lock is more effi-
cient than setting n page-level locks or having to lock each individual record. Now
suppose another transaction T2 only wants to read record r1nj from page p1n of file f1;
then T2 would request a shared record-level lock on r1nj. However, the database sys-
tem (that is, the transaction manager or more specifically the lock manager) must
verify the compatibility of the requested lock with already held locks. One way to ver-
ify this is to traverse the tree from the leaf r1nj to p1n to f1 to db. If at any time a con-
flicting lock is held on any of those items, then the lock request for r1nj is denied and
T2 is blocked and must wait. This traversal would be fairly efficient.

However, what if transaction T2’s request came before transaction T1’s request? In
this case, the shared record lock is granted to T2 for r1nj, but when T1’s file-level lock
is requested, it is quite difficult for the lock manager to check all nodes (pages and
records) that are descendants of node f1 for a lock conflict. This would be very inef-
ficient and would defeat the purpose of having multiple granularity level locks.

To make multiple granularity level locking practical, additional types of locks, called
intention locks, are needed. The idea behind intention locks is for a transaction to
indicate, along the path from the root to the desired node, what type of lock (shared
or exclusive) it will require from one of the node’s descendants. There are three
types of intention locks:

1. Intention-shared (IS) indicates that one or more shared locks will be
requested on some descendant node(s).

2. Intention-exclusive (IX) indicates that one or more exclusive locks will be
requested on some descendant node(s).

3. Shared-intention-exclusive (SIX) indicates that the current node is locked in
shared mode but that one or more exclusive locks will be requested on some
descendant node(s).

The compatibility table of the three intention locks, and the shared and exclusive
locks, is shown in Figure 22.8. Besides the introduction of the three types of inten-
tion locks, an appropriate locking protocol must be used. The multiple granularity
locking (MGL) protocol consists of the following rules:

1. The lock compatibility (based on Figure 22.8) must be adhered to.

2. The root of the tree must be locked first, in any mode.

3. A node N can be locked by a transaction T in S or IS mode only if the parent
node N is already locked by transaction T in either IS or IX mode.

4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the
parent of node N is already locked by transaction T in either IX or SIX mode.

5. A transaction T can lock a node only if it has not unlocked any node (to
enforce the 2PL protocol).
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Figure 22.8
Lock compatibility matrix for
multiple granularity locking.

6. A transaction T can unlock a node, N, only if none of the children of node N
are currently locked by T.

Rule 1 simply states that conflicting locks cannot be granted. Rules 2, 3, and 4 state
the conditions when a transaction may lock a given node in any of the lock modes.
Rules 5 and 6 of the MGL protocol enforce 2PL rules to produce serializable sched-
ules. To illustrate the MGL protocol with the database hierarchy in Figure 22.7, con-
sider the following three transactions:

1. T1 wants to update record r111 and record r211.

2. T2 wants to update all records on page p12.

3. T3 wants to read record r11j and the entire f2 file.

Figure 22.9 shows a possible serializable schedule for these three transactions. Only
the lock and unlock operations are shown. The notation <lock_type>(<item>) is
used to display the locking operations in the schedule.

The multiple granularity level protocol is especially suited when processing a mix of
transactions that include (1) short transactions that access only a few items (records
or fields) and (2) long transactions that access entire files. In this environment, less
transaction blocking and less locking overhead is incurred by such a protocol when
compared to a single level granularity locking approach.

22.6 Using Locks for Concurrency 
Control in Indexes

Two-phase locking can also be applied to indexes (see Chapter 18), where the nodes
of an index correspond to disk pages. However, holding locks on index pages until
the shrinking phase of 2PL could cause an undue amount of transaction blocking
because searching an index always starts at the root. Therefore, if a transaction wants
to insert a record (write operation), the root would be locked in exclusive mode, so
all other conflicting lock requests for the index must wait until the transaction
enters its shrinking phase. This blocks all other transactions from accessing the
index, so in practice other approaches to locking an index must be used.
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Figure 22.9
Lock operations to
illustrate a serializable
schedule.

The tree structure of the index can be taken advantage of when developing a con-
currency control scheme. For example, when an index search (read operation) is
being executed, a path in the tree is traversed from the root to a leaf. Once a lower-
level node in the path has been accessed, the higher-level nodes in that path will not
be used again. So once a read lock on a child node is obtained, the lock on the par-
ent can be released. When an insertion is being applied to a leaf node (that is, when
a key and a pointer are inserted), then a specific leaf node must be locked in exclu-
sive mode. However, if that node is not full, the insertion will not cause changes to
higher-level index nodes, which implies that they need not be locked exclusively.

A conservative approach for insertions would be to lock the root node in exclusive
mode and then to access the appropriate child node of the root. If the child node is



800 Chapter 22 Concurrency Control Techniques

not full, then the lock on the root node can be released. This approach can be
applied all the way down the tree to the leaf, which is typically three or four levels
from the root. Although exclusive locks are held, they are soon released. An alterna-
tive, more optimistic approach would be to request and hold shared locks on the
nodes leading to the leaf node, with an exclusive lock on the leaf. If the insertion
causes the leaf to split, insertion will propagate to one or more higher-level nodes.
Then, the locks on the higher-level nodes can be upgraded to exclusive mode.

Another approach to index locking is to use a variant of the B+-tree, called the B-
link tree. In a B-link tree, sibling nodes on the same level are linked at every level.
This allows shared locks to be used when requesting a page and requires that the
lock be released before accessing the child node. For an insert operation, the shared
lock on a node would be upgraded to exclusive mode. If a split occurs, the parent
node must be relocked in exclusive mode. One complication is for search operations
executed concurrently with the update. Suppose that a concurrent update operation
follows the same path as the search, and inserts a new entry into the leaf node.
Additionally, suppose that the insert causes that leaf node to split. When the insert is
done, the search process resumes, following the pointer to the desired leaf, only to
find that the key it is looking for is not present because the split has moved that key
into a new leaf node, which would be the right sibling of the original leaf node.
However, the search process can still succeed if it follows the pointer (link) in the
original leaf node to its right sibling, where the desired key has been moved.

Handling the deletion case, where two or more nodes from the index tree merge, is
also part of the B-link tree concurrency protocol. In this case, locks on the nodes to
be merged are held as well as a lock on the parent of the two nodes to be merged.

22.7 Other Concurrency Control Issues
In this section we discuss some other issues relevant to concurrency control. In
Section 22.7.1, we discuss problems associated with insertion and deletion of
records and the so-called phantom problem, which may occur when records are
inserted. This problem was described as a potential problem requiring a concur-
rency control measure in Section 21.6. In Section 22.7.2 we discuss problems that
may occur when a transaction outputs some data to a monitor before it commits,
and then the transaction is later aborted.

22.7.1 Insertion, Deletion, and Phantom Records
When a new data item is inserted in the database, it obviously cannot be accessed
until after the item is created and the insert operation is completed. In a locking
environment, a lock for the item can be created and set to exclusive (write) mode;
the lock can be released at the same time as other write locks would be released,
based on the concurrency control protocol being used. For a timestamp-based pro-
tocol, the read and write timestamps of the new item are set to the timestamp of the
creating transaction.
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Next, consider a deletion operation that is applied on an existing data item. For
locking protocols, again an exclusive (write) lock must be obtained before the trans-
action can delete the item. For timestamp ordering, the protocol must ensure that no
later transaction has read or written the item before allowing the item to be deleted.

A situation known as the phantom problem can occur when a new record that is
being inserted by some transaction T satisfies a condition that a set of records
accessed by another transaction T� must satisfy. For example, suppose that transac-
tion T is inserting a new EMPLOYEE record whose Dno = 5, while transaction T� is
accessing all EMPLOYEE records whose Dno = 5 (say, to add up all their Salary values
to calculate the personnel budget for department 5). If the equivalent serial order is
T followed by T�, then T�must read the new EMPLOYEE record and include its Salary
in the sum calculation. For the equivalent serial order T� followed by T, the new
salary should not be included. Notice that although the transactions logically con-
flict, in the latter case there is really no record (data item) in common between the
two transactions, since T� may have locked all the records with Dno = 5 before T
inserted the new record. This is because the record that causes the conflict is a
phantom record that has suddenly appeared in the database on being inserted. If
other operations in the two transactions conflict, the conflict due to the phantom
record may not be recognized by the concurrency control protocol.

One solution to the phantom record problem is to use index locking, as discussed
in Section 22.6. Recall from Chapter 18 that an index includes entries that have an
attribute value, plus a set of pointers to all records in the file with that value. For
example, an index on Dno of EMPLOYEE would include an entry for each distinct
Dno value, plus a set of pointers to all EMPLOYEE records with that value. If the
index entry is locked before the record itself can be accessed, then the conflict on the
phantom record can be detected, because transaction T� would request a read lock
on the index entry for Dno = 5, and T would request a write lock on the same entry
before they could place the locks on the actual records. Since the index locks conflict,
the phantom conflict would be detected.

A more general technique, called predicate locking, would lock access to all records
that satisfy an arbitrary predicate (condition) in a similar manner; however, predi-
cate locks have proved to be difficult to implement efficiently.

22.7.2 Interactive Transactions
Another problem occurs when interactive transactions read input and write output
to an interactive device, such as a monitor screen, before they are committed. The
problem is that a user can input a value of a data item to a transaction T that is
based on some value written to the screen by transaction T�, which may not have
committed. This dependency between T and T� cannot be modeled by the system
concurrency control method, since it is only based on the user interacting with the
two transactions.

An approach to dealing with this problem is to postpone output of transactions to
the screen until they have committed.
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22.7.3 Latches
Locks held for a short duration are typically called latches. Latches do not follow the
usual concurrency control protocol such as two-phase locking. For example, a latch
can be used to guarantee the physical integrity of a page when that page is being
written from the buffer to disk. A latch would be acquired for the page, the page
written to disk, and then the latch released.

22.8 Summary
In this chapter we discussed DBMS techniques for concurrency control. We started
by discussing lock-based protocols, which are by far the most commonly used in
practice. We described the two-phase locking (2PL) protocol and a number of its
variations: basic 2PL, strict 2PL, conservative 2PL, and rigorous 2PL. The strict and
rigorous variations are more common because of their better recoverability proper-
ties. We introduced the concepts of shared (read) and exclusive (write) locks, and
showed how locking can guarantee serializability when used in conjunction with
the two-phase locking rule. We also presented various techniques for dealing with
the deadlock problem, which can occur with locking. In practice, it is common to
use timeouts and deadlock detection (wait-for graphs).

We presented other concurrency control protocols that are not used often in prac-
tice but are important for the theoretical alternatives they show for solving this
problem. These include the timestamp ordering protocol, which ensures serializ-
ability based on the order of transaction timestamps. Timestamps are unique,
system-generated transaction identifiers. We discussed Thomas’s write rule, which
improves performance but does not guarantee conflict serializability. The strict
timestamp ordering protocol was also presented. We discussed two multiversion
protocols, which assume that older versions of data items can be kept in the data-
base. One technique, called multiversion two-phase locking (which has been used in
practice), assumes that two versions can exist for an item and attempts to increase
concurrency by making write and read locks compatible (at the cost of introducing
an additional certify lock mode). We also presented a multiversion protocol based
on timestamp ordering, and an example of an optimistic protocol, which is also
known as a certification or validation protocol.

Then we turned our attention to the important practical issue of data item granu-
larity. We described a multigranularity locking protocol that allows the change of
granularity (item size) based on the current transaction mix, with the goal of
improving the performance of concurrency control. An important practical issue
was then presented, which is to develop locking protocols for indexes so that indexes
do not become a hindrance to concurrent access. Finally, we introduced the phan-
tom problem and problems with interactive transactions, and briefly described the
concept of latches and how it differs from locks.
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Review Questions
22.1. What is the two-phase locking protocol? How does it guarantee serializabil-

ity?

22.2. What are some variations of the two-phase locking protocol? Why is strict or
rigorous two-phase locking often preferred?

22.3. Discuss the problems of deadlock and starvation, and the different
approaches to dealing with these problems.

22.4. Compare binary locks to exclusive/shared locks. Why is the latter type of
locks preferable?

22.5. Describe the wait-die and wound-wait protocols for deadlock prevention.

22.6. Describe the cautious waiting, no waiting, and timeout protocols for dead-
lock prevention.

22.7. What is a timestamp? How does the system generate timestamps?

22.8. Discuss the timestamp ordering protocol for concurrency control. How does
strict timestamp ordering differ from basic timestamp ordering?

22.9. Discuss two multiversion techniques for concurrency control.

22.10. What is a certify lock? What are the advantages and disadvantages of using
certify locks?

22.11. How do optimistic concurrency control techniques differ from other con-
currency control techniques? Why are they also called validation or certifica-
tion techniques? Discuss the typical phases of an optimistic concurrency
control method.

22.12. How does the granularity of data items affect the performance of concur-
rency control? What factors affect selection of granularity size for data items?

22.13. What type of lock is needed for insert and delete operations?

22.14. What is multiple granularity locking? Under what circumstances is it used?

22.15. What are intention locks?

22.16. When are latches used?

22.17. What is a phantom record? Discuss the problem that a phantom record can
cause for concurrency control.

22.18. How does index locking resolve the phantom problem?

22.19. What is a predicate lock?
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Exercises
22.20. Prove that the basic two-phase locking protocol guarantees conflict serializ-

ability of schedules. (Hint: Show that if a serializability graph for a schedule
has a cycle, then at least one of the transactions participating in the schedule
does not obey the two-phase locking protocol.)

22.21. Modify the data structures for multiple-mode locks and the algorithms for
read_lock(X), write_lock(X), and unlock(X) so that upgrading and downgrad-
ing of locks are possible. (Hint: The lock needs to check the transaction id(s)
that hold the lock, if any.)

22.22. Prove that strict two-phase locking guarantees strict schedules.

22.23. Prove that the wait-die and wound-wait protocols avoid deadlock and star-
vation.

22.24. Prove that cautious waiting avoids deadlock.

22.25. Apply the timestamp ordering algorithm to the schedules in Figure 21.8(b)
and (c), and determine whether the algorithm will allow the execution of the
schedules.

22.26. Repeat Exercise 22.25, but use the multiversion timestamp ordering method.

22.27. Why is two-phase locking not used as a concurrency control method for
indexes such as B+-trees?

22.28. The compatibility matrix in Figure 22.8 shows that IS and IX locks are com-
patible. Explain why this is valid.

22.29. The MGL protocol states that a transaction T can unlock a node N, only if
none of the children of node N are still locked by transaction T. Show that
without this condition, the MGL protocol would be incorrect.
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Database Recovery 
Techniques

In this chapter we discuss some of the techniques that
can be used for database recovery from failures. In

Section 21.1.4 we discussed the different causes of failure, such as system crashes
and transaction errors. Also, in Section 21.2, we covered many of the concepts that
are used by recovery processes, such as the system log and commit points.

This chapter presents additional concepts that are relevant to recovery protocols,
and provides an overview of the various database recovery algorithms We start in
Section 23.1 with an outline of a typical recovery procedure and a categorization of
recovery algorithms, and then we discuss several recovery concepts, including write-
ahead logging, in-place versus shadow updates, and the process of rolling back
(undoing) the effect of an incomplete or failed transaction. In Section 23.2 we pre-
sent recovery techniques based on deferred update, also known as the NO-
UNDO/REDO technique, where the data on disk is not updated until after a
transaction commits. In Section 23.3 we discuss recovery techniques based on
immediate update, where data can be updated on disk during transaction execution;
these include the UNDO/REDO and UNDO/NO-REDO algorithms. We discuss the
technique known as shadowing or shadow paging, which can be categorized as a
NO-UNDO/NO-REDO algorithm in Section 23.4. An example of a practical DBMS
recovery scheme, called ARIES, is presented in Section 23.5. Recovery in multidata-
bases is briefly discussed in Section 23.6. Finally, techniques for recovery from cata-
strophic failure are discussed in Section 23.7. Section 23.8 summarizes the chapter.

Our emphasis is on conceptually describing several different approaches to recov-
ery. For descriptions of recovery features in specific systems, the reader should con-
sult the bibliographic notes at the end of the chapter and the online and printed
user manuals for those systems. Recovery techniques are often intertwined with the

23chapter 23
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concurrency control mechanisms. Certain recovery techniques are best used with
specific concurrency control methods. We will discuss recovery concepts indepen-
dently of concurrency control mechanisms, but we will discuss the circumstances
under which a particular recovery mechanism is best used with a certain concur-
rency control protocol.

23.1 Recovery Concepts

23.1.1 Recovery Outline and Categorization 
of Recovery Algorithms

Recovery from transaction failures usually means that the database is restored to the
most recent consistent state just before the time of failure. To do this, the system
must keep information about the changes that were applied to data items by the
various transactions. This information is typically kept in the system log, as we dis-
cussed in Section 21.2.2. A typical strategy for recovery may be summarized infor-
mally as follows:

1. If there is extensive damage to a wide portion of the database due to cata-
strophic failure, such as a disk crash, the recovery method restores a past
copy of the database that was backed up to archival storage (typically tape or
other large capacity offline storage media) and reconstructs a more current
state by reapplying or redoing the operations of committed transactions
from the backed up log, up to the time of failure.

2. When the database on disk is not physically damaged, and a noncatastrophic
failure of types 1 through 4 in Section 21.1.4 has occurred, the recovery
strategy is to identify any changes that may cause an inconsistency in the
database. For example, a transaction that has updated some database items
on disk but has not been committed needs to have its changes reversed by
undoing its write operations. It may also be necessary to redo some opera-
tions in order to restore a consistent state of the database; for example, if a
transaction has committed but some of its write operations have not yet
been written to disk. For noncatastrophic failure, the recovery protocol does
not need a complete archival copy of the database. Rather, the entries kept in
the online system log on disk are analyzed to determine the appropriate
actions for recovery.

Conceptually, we can distinguish two main techniques for recovery from noncata-
strophic transaction failures: deferred update and immediate update. The deferred
update techniques do not physically update the database on disk until after a trans-
action reaches its commit point; then the updates are recorded in the database.
Before reaching commit, all transaction updates are recorded in the local transac-
tion workspace or in the main memory buffers that the DBMS maintains (the
DBMS main memory cache). Before commit, the updates are recorded persistently
in the log, and then after commit, the updates are written to the database on disk.
If a transaction fails before reaching its commit point, it will not have changed the



23.1 Recovery Concepts 809

database in any way, so UNDO is not needed. It may be necessary to REDO the
effect of the operations of a committed transaction from the log, because their
effect may not yet have been recorded in the database on disk. Hence, deferred
update is also known as the NO-UNDO/REDO algorithm. We discuss this tech-
nique in Section 23.2.

In the immediate update techniques, the database may be updated by some opera-
tions of a transaction before the transaction reaches its commit point. However,
these operations must also be recorded in the log on disk by force-writing before they
are applied to the database on disk, making recovery still possible. If a transaction
fails after recording some changes in the database on disk but before reaching its
commit point, the effect of its operations on the database must be undone; that is,
the transaction must be rolled back. In the general case of immediate update, both
undo and redo may be required during recovery. This technique, known as the
UNDO/REDO algorithm, requires both operations during recovery, and is used
most often in practice. A variation of the algorithm where all updates are required
to be recorded in the database on disk before a transaction commits requires undo
only, so it is known as the UNDO/NO-REDO algorithm. We discuss these techniques
in Section 23.3.

The UNDO and REDO operations are required to be idempotent—that is, executing
an operation multiple times is equivalent to executing it just once. In fact, the whole
recovery process should be idempotent because if the system were to fail during the
recovery process, the next recovery attempt might UNDO and REDO certain
write_item operations that had already been executed during the first recovery
process. The result of recovery from a system crash during recovery should be the
same as the result of recovering when there is no crash during recovery!

23.1.2 Caching (Buffering) of Disk Blocks
The recovery process is often closely intertwined with operating system functions—
in particular, the buffering of database disk pages in the DBMS main memory
cache. Typically, multiple disk pages that include the data items to be updated are
cached into main memory buffers and then updated in memory before being writ-
ten back to disk. The caching of disk pages is traditionally an operating system func-
tion, but because of its importance to the efficiency of recovery procedures, it is
handled by the DBMS by calling low-level operating systems routines.

In general, it is convenient to consider recovery in terms of the database disk pages
(blocks). Typically a collection of in-memory buffers, called the DBMS cache, is
kept under the control of the DBMS for the purpose of holding these buffers. A
directory for the cache is used to keep track of which database items are in the
buffers.1 This can be a table of <Disk_page_address, Buffer_location, ... > entries.
When the DBMS requests action on some item, first it checks the cache directory to
determine whether the disk page containing the item is in the DBMS cache. If it is

1This is somewhat similar to the concept of page tables used by the operating system.



810 Chapter 23 Database Recovery Techniques

not, the item must be located on disk, and the appropriate disk pages are copied into
the cache. It may be necessary to replace (or flush) some of the cache buffers to
make space available for the new item. Some page replacement strategy similar to
these used in operating systems, such as least recently used (LRU) or first-in-first-
out (FIFO), or a new strategy that is DBMS-specific can be used to select the buffers
for replacement, such as DBMIN or Least-Likely-to-Use (see bibliographic notes).

The entries in the DBMS cache directory hold additional information relevant to
buffer management. Associated with each buffer in the cache is a dirty bit, which
can be included in the directory entry, to indicate whether or not the buffer has
been modified. When a page is first read from the database disk into a cache buffer,
a new entry is inserted in the cache directory with the new disk page address, and
the dirty bit is set to 0 (zero). As soon as the buffer is modified, the dirty bit for the
corresponding directory entry is set to 1 (one). Additional information, such as the
transaction id(s) of the transaction(s) that modified the buffer can also be kept in
the directory. When the buffer contents are replaced (flushed) from the cache, the
contents must first be written back to the corresponding disk page only if its dirty bit
is 1. Another bit, called the pin-unpin bit, is also needed—a page in the cache is
pinned (bit value 1 (one)) if it cannot be written back to disk as yet. For example,
the recovery protocol may restrict certain buffer pages from being written back to
the disk until the transactions that changed this buffer have committed.

Two main strategies can be employed when flushing a modified buffer back to disk.
The first strategy, known as in-place updating, writes the buffer to the same original
disk location, thus overwriting the old value of any changed data items on disk.2

Hence, a single copy of each database disk block is maintained. The second strategy,
known as shadowing, writes an updated buffer at a different disk location, so mul-
tiple versions of data items can be maintained, but this approach is not typically
used in practice.

In general, the old value of the data item before updating is called the before image
(BFIM), and the new value after updating is called the after image (AFIM). If shad-
owing is used, both the BFIM and the AFIM can be kept on disk; hence, it is not
strictly necessary to maintain a log for recovering. We briefly discuss recovery based
on shadowing in Section 23.4.

23.1.3 Write-Ahead Logging, Steal/No-Steal, 
and Force/No-Force

When in-place updating is used, it is necessary to use a log for recovery (see Section
21.2.2). In this case, the recovery mechanism must ensure that the BFIM of the data
item is recorded in the appropriate log entry and that the log entry is flushed to disk
before the BFIM is overwritten with the AFIM in the database on disk. This process
is generally known as write-ahead logging, and is necessary to be able to UNDO the
operation if this is required during recovery. Before we can describe a protocol for

2In-place updating is used in most systems in practice.



23.1 Recovery Concepts 811

write-ahead logging, we need to distinguish between two types of log entry infor-
mation included for a write command: the information needed for UNDO and the
information needed for REDO. A REDO-type log entry includes the new value
(AFIM) of the item written by the operation since this is needed to redo the effect of
the operation from the log (by setting the item value in the database on disk to its
AFIM). The UNDO-type log entries include the old value (BFIM) of the item since
this is needed to undo the effect of the operation from the log (by setting the item
value in the database back to its BFIM). In an UNDO/REDO algorithm, both types of
log entries are combined. Additionally, when cascading rollback is possible,
read_item entries in the log are considered to be UNDO-type entries (see Section
23.1.5).

As mentioned, the DBMS cache holds the cached database disk blocks in main
memory buffers, which include not only data blocks, but also index blocks and log
blocks from the disk. When a log record is written, it is stored in the current log
buffer in the DBMS cache. The log is simply a sequential (append-only) disk file,
and the DBMS cache may contain several log blocks in main memory buffers (typi-
cally, the last n log blocks of the log file). When an update to a data block—stored in
the DBMS cache—is made, an associated log record is written to the last log buffer
in the DBMS cache. With the write-ahead logging approach, the log buffers (blocks)
that contain the associated log records for a particular data block update must first
be written to disk before the data block itself can be written back to disk from its
main memory buffer.

Standard DBMS recovery terminology includes the terms steal/no-steal and
force/no-force, which specify the rules that govern when a page from the database
can be written to disk from the cache:

1. If a cache buffer page updated by a transaction cannot be written to disk
before the transaction commits, the recovery method is called a no-steal
approach. The pin-unpin bit will be used to indicate if a page cannot be
written back to disk. On the other hand, if the recovery protocol allows writ-
ing an updated buffer before the transaction commits, it is called steal. Steal
is used when the DBMS cache (buffer) manager needs a buffer frame for
another transaction and the buffer manager replaces an existing page that
had been updated but whose transaction has not committed. The no-steal
rule means that UNDO will never be needed during recovery, since a commit-
ted transaction will not have any of its updates on disk before it commits.

2. If all pages updated by a transaction are immediately written to disk before
the transaction commits, it is called a force approach. Otherwise, it is called
no-force. The force rule means that REDO will never be needed during recov-
ery, since any committed transaction will have all its updates on disk before
it is committed.

The deferred update (NO-UNDO) recovery scheme discussed in Section 23.2 follows
a no-steal approach. However, typical database systems employ a steal/no-force strat-
egy. The advantage of steal is that it avoids the need for a very large buffer space to
store all updated pages in memory. The advantage of no-force is that an updated
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page of a committed transaction may still be in the buffer when another transaction
needs to update it, thus eliminating the I/O cost to write that page multiple times to
disk, and possibly to have to read it again from disk. This may provide a substantial
saving in the number of disk I/O operations when a specific page is updated heavily
by multiple transactions.

To permit recovery when in-place updating is used, the appropriate entries required
for recovery must be permanently recorded in the log on disk before changes are
applied to the database. For example, consider the following write-ahead logging
(WAL) protocol for a recovery algorithm that requires both UNDO and REDO:

1. The before image of an item cannot be overwritten by its after image in the
database on disk until all UNDO-type log records for the updating transac-
tion—up to this point—have been force-written to disk.

2. The commit operation of a transaction cannot be completed until all the
REDO-type and UNDO-type log records for that transaction have been force-
written to disk.

To facilitate the recovery process, the DBMS recovery subsystem may need to main-
tain a number of lists related to the transactions being processed in the system.
These include a list for active transactions that have started but not committed as
yet, and it may also include lists of all committed and aborted transactions since
the last checkpoint (see the next section). Maintaining these lists makes the recovery
process more efficient.

23.1.4 Checkpoints in the System Log 
and Fuzzy Checkpointing

Another type of entry in the log is called a checkpoint.3 A [checkpoint, list of active
transactions] record is written into the log periodically at that point when the system
writes out to the database on disk all DBMS buffers that have been modified. As a
consequence of this, all transactions that have their [commit, T ] entries in the log
before a [checkpoint] entry do not need to have their WRITE operations redone in case
of a system crash, since all their updates will be recorded in the database on disk
during checkpointing. As part of checkpointing, the list of transaction ids for active
transactions at the time of the checkpoint is included in the checkpoint record, so
that these transactions can be easily identified during recovery.

The recovery manager of a DBMS must decide at what intervals to take a check-
point. The interval may be measured in time—say, every m minutes—or in the
number t of committed transactions since the last checkpoint, where the values of m
or t are system parameters. Taking a checkpoint consists of the following actions:

1. Suspend execution of transactions temporarily.

2. Force-write all main memory buffers that have been modified to disk.

3The term checkpoint has been used to describe more restrictive situations in some systems, such as
DB2. It has also been used in the literature to describe entirely different concepts.
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3. Write a [checkpoint] record to the log, and force-write the log to disk.

4. Resume executing transactions.

As a consequence of step 2, a checkpoint record in the log may also include addi-
tional information, such as a list of active transaction ids, and the locations
(addresses) of the first and most recent (last) records in the log for each active trans-
action. This can facilitate undoing transaction operations in the event that a trans-
action must be rolled back.

The time needed to force-write all modified memory buffers may delay transaction
processing because of step 1. To reduce this delay, it is common to use a technique
called fuzzy checkpointing. In this technique, the system can resume transaction
processing after a [begin_checkpoint] record is written to the log without having to
wait for step 2 to finish. When step 2 is completed, an [end_checkpoint, ...] record is
written in the log with the relevant information collected during checkpointing.
However, until step 2 is completed, the previous checkpoint record should remain
valid. To accomplish this, the system maintains a file on disk that contains a pointer
to the valid checkpoint, which continues to point to the previous checkpoint record
in the log. Once step 2 is concluded, that pointer is changed to point to the new
checkpoint in the log.

23.1.5 Transaction Rollback and Cascading Rollback
If a transaction fails for whatever reason after updating the database, but before the
transaction commits, it may be necessary to roll back the transaction. If any data
item values have been changed by the transaction and written to the database, they
must be restored to their previous values (BFIMs). The undo-type log entries are
used to restore the old values of data items that must be rolled back.

If a transaction T is rolled back, any transaction S that has, in the interim, read the
value of some data item X written by T must also be rolled back. Similarly, once S is
rolled back, any transaction R that has read the value of some data item Y written by
S must also be rolled back; and so on. This phenomenon is called cascading roll-
back, and can occur when the recovery protocol ensures recoverable schedules but
does not ensure strict or cascadeless schedules (see Section 21.4.2). Understandably,
cascading rollback can be quite complex and time-consuming. That is why almost
all recovery mechanisms are designed so that cascading rollback is never required.

Figure 23.1 shows an example where cascading rollback is required. The read and
write operations of three individual transactions are shown in Figure 23.1(a). Figure
23.1(b) shows the system log at the point of a system crash for a particular execution
schedule of these transactions. The values of data items A, B, C, and D, which are used
by the transactions, are shown to the right of the system log entries. We assume that
the original item values, shown in the first line, are A = 30, B = 15, C = 40, and D = 20.
At the point of system failure, transaction T3 has not reached its conclusion and must
be rolled back. The WRITE operations of T3, marked by a single * in Figure 23.1(b),
are the T3 operations that are undone during transaction rollback. Figure 23.1(c)
graphically shows the operations of the different transactions along the time axis.
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Illustrating cascading rollback
(a process that never occurs
in strict or cascadeless
schedules). (a) The read and
write operations of three
transactions. (b) System log
at point of crash. (c)
Operations before the crash.
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We must now check for cascading rollback. From Figure 23.1(c) we see that transac-
tion T2 reads the value of item B that was written by transaction T3; this can also be
determined by examining the log. Because T3 is rolled back, T2 must now be rolled
back, too. The WRITE operations of T2, marked by ** in the log, are the ones that are
undone. Note that only write_item operations need to be undone during transaction
rollback; read_item operations are recorded in the log only to determine whether
cascading rollback of additional transactions is necessary.

In practice, cascading rollback of transactions is never required because practical
recovery methods guarantee cascadeless or strict schedules. Hence, there is also no
need to record any read_item operations in the log because these are needed only for
determining cascading rollback.

23.1.6 Transaction Actions That Do Not Affect 
the Database

In general, a transaction will have actions that do not affect the database, such as
generating and printing messages or reports from information retrieved from the
database. If a transaction fails before completion, we may not want the user to get
these reports, since the transaction has failed to complete. If such erroneous reports
are produced, part of the recovery process would have to inform the user that these
reports are wrong, since the user may take an action based on these reports that
affects the database. Hence, such reports should be generated only after the transac-
tion reaches its commit point. A common method of dealing with such actions is to
issue the commands that generate the reports but keep them as batch jobs, which
are executed only after the transaction reaches its commit point. If the transaction
fails, the batch jobs are canceled.

23.2 NO-UNDO/REDO Recovery Based 
on Deferred Update

The idea behind deferred update is to defer or postpone any actual updates to the
database on disk until the transaction completes its execution successfully and
reaches its commit point.4

During transaction execution, the updates are recorded only in the log and in the
cache buffers. After the transaction reaches its commit point and the log is force-
written to disk, the updates are recorded in the database. If a transaction fails before
reaching its commit point, there is no need to undo any operations because the
transaction has not affected the database on disk in any way. Therefore, only REDO-
type log entries are needed in the log, which include the new value (AFIM) of the
item written by a write operation. The UNDO-type log entries are not needed since
no undoing of operations will be required during recovery. Although this may sim-
plify the recovery process, it cannot be used in practice unless transactions are short

4Hence deferred update can generally be characterized as a no-steal approach.
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and each transaction changes few items. For other types of transactions, there is the
potential for running out of buffer space because transaction changes must be held
in the cache buffers until the commit point.

We can state a typical deferred update protocol as follows:

1. A transaction cannot change the database on disk until it reaches its commit
point.

2. A transaction does not reach its commit point until all its REDO-type log
entries are recorded in the log and the log buffer is force-written to disk.

Notice that step 2 of this protocol is a restatement of the write-ahead logging (WAL)
protocol. Because the database is never updated on disk until after the transaction
commits, there is never a need to UNDO any operations. REDO is needed in case the
system fails after a transaction commits but before all its changes are recorded in the
database on disk. In this case, the transaction operations are redone from the log
entries during recovery.

For multiuser systems with concurrency control, the concurrency control and
recovery processes are interrelated. Consider a system in which concurrency control
uses strict two-phase locking, so the locks on items remain in effect until the trans-
action reaches its commit point. After that, the locks can be released. This ensures
strict and serializable schedules. Assuming that [checkpoint] entries are included in
the log, a possible recovery algorithm for this case, which we call RDU_M (Recovery
using Deferred Update in a Multiuser environment), is given next.

Procedure RDU_M (NO-UNDO/REDO with checkpoints). Use two lists of
transactions maintained by the system: the committed transactions T since the
last checkpoint (commit list), and the active transactions T� (active list).
REDO all the WRITE operations of the committed transactions from the log, in
the order in which they were written into the log. The transactions that are active
and did not commit are effectively canceled and must be resubmitted.

The REDO procedure is defined as follows:

Procedure REDO (WRITE_OP). Redoing a write_item operation WRITE_OP con-
sists of examining its log entry [write_item, T, X, new_value] and setting the value
of item X in the database to new_value, which is the after image (AFIM).

Figure 23.2 illustrates a timeline for a possible schedule of executing transactions.
When the checkpoint was taken at time t1, transaction T1 had committed, whereas
transactions T3 and T4 had not. Before the system crash at time t2, T3 and T2 were
committed but not T4 and T5. According to the RDU_M method, there is no need to
redo the write_item operations of transaction T1—or any transactions committed
before the last checkpoint time t1. The write_item operations of T2 and T3 must be
redone, however, because both transactions reached their commit points after the
last checkpoint. Recall that the log is force-written before committing a transaction.
Transactions T4 and T5 are ignored: They are effectively canceled or rolled back
because none of their write_item operations were recorded in the database on disk
under the deferred update protocol.



23.3 Recovery Techniques Based on Immediate Update 817
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Figure 23.2
An example of a
recovery timeline to
illustrate the effect of
checkpointing.

We can make the NO-UNDO/REDO recovery algorithm more efficient by noting that,
if a data item X has been updated—as indicated in the log entries—more than once
by committed transactions since the last checkpoint, it is only necessary to REDO
the last update of X from the log during recovery because the other updates would be
overwritten by this last REDO. In this case, we start from the end of the log; then,
whenever an item is redone, it is added to a list of redone items. Before REDO is
applied to an item, the list is checked; if the item appears on the list, it is not redone
again, since its last value has already been recovered.

If a transaction is aborted for any reason (say, by the deadlock detection method), it
is simply resubmitted, since it has not changed the database on disk. A drawback of
the method described here is that it limits the concurrent execution of transactions
because all write-locked items remain locked until the transaction reaches its commit
point. Additionally, it may require excessive buffer space to hold all updated items
until the transactions commit. The method’s main benefit is that transaction oper-
ations never need to be undone, for two reasons:

1. A transaction does not record any changes in the database on disk until after
it reaches its commit point—that is, until it completes its execution success-
fully. Hence, a transaction is never rolled back because of failure during
transaction execution.

2. A transaction will never read the value of an item that is written by an
uncommitted transaction, because items remain locked until a transaction
reaches its commit point. Hence, no cascading rollback will occur.

Figure 23.3 shows an example of recovery for a multiuser system that utilizes the
recovery and concurrency control method just described.

23.3 Recovery Techniques Based 
on Immediate Update

In these techniques, when a transaction issues an update command, the database on
disk can be updated immediately, without any need to wait for the transaction to
reach its commit point. Notice that it is not a requirement that every update be
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ery using deferred
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transactions. (a) The
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operations of four
transactions. (b)
System log at the
point of crash.

applied immediately to disk; it is just possible that some updates are applied to disk
before the transaction commits.

Provisions must be made for undoing the effect of update operations that have been
applied to the database by a failed transaction. This is accomplished by rolling back
the transaction and undoing the effect of the transaction’s write_item operations.
Therefore, the UNDO-type log entries, which include the old value (BFIM) of the
item, must be stored in the log. Because UNDO can be needed during recovery, these
methods follow a steal strategy for deciding when updated main memory buffers
can be written back to disk (see Section 23.1.3). Theoretically, we can distinguish
two main categories of immediate update algorithms. If the recovery technique
ensures that all updates of a transaction are recorded in the database on disk before
the transaction commits, there is never a need to REDO any operations of committed
transactions. This is called the UNDO/NO-REDO recovery algorithm. In this
method, all updates by a transaction must be recorded on disk before the transaction
commits, so that REDO is never needed. Hence, this method must utilize the force
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strategy for deciding when updated main memory buffers are written back to disk
(see Section 23.1.3).

If the transaction is allowed to commit before all its changes are written to the data-
base, we have the most general case, known as the UNDO/REDO recovery algo-
rithm. In this case, the steal/no-force strategy is applied (see Section 23.1.3). This is
also the most complex technique. We will outline an UNDO/REDO recovery algo-
rithm and leave it as an exercise for the reader to develop the UNDO/NO-REDO vari-
ation. In Section 23.5, we describe a more practical approach known as the ARIES
recovery technique.

When concurrent execution is permitted, the recovery process again depends on the
protocols used for concurrency control. The procedure RIU_M (Recovery using
Immediate Updates for a Multiuser environment) outlines a recovery algorithm for
concurrent transactions with immediate update (UNDO/REDO recovery). Assume
that the log includes checkpoints and that the concurrency control protocol pro-
duces strict schedules—as, for example, the strict two-phase locking protocol does.
Recall that a strict schedule does not allow a transaction to read or write an item
unless the transaction that last wrote the item has committed (or aborted and rolled
back). However, deadlocks can occur in strict two-phase locking, thus requiring
abort and UNDO of transactions. For a strict schedule, UNDO of an operation
requires changing the item back to its old value (BFIM).

Procedure RIU_M (UNDO/REDO with checkpoints).

1. Use two lists of transactions maintained by the system: the committed trans-
actions since the last checkpoint and the active transactions.

2. Undo all the write_item operations of the active (uncommitted) transactions,
using the UNDO procedure. The operations should be undone in the reverse
of the order in which they were written into the log.

3. Redo all the write_item operations of the committed transactions from the log,
in the order in which they were written into the log, using the REDO proce-
dure defined earlier.

The UNDO procedure is defined as follows:

Procedure UNDO (WRITE_OP). Undoing a write_item operation write_op con-
sists of examining its log entry [write_item, T, X, old_value, new_value] and set-
ting the value of item X in the database to old_value, which is the before image
(BFIM). Undoing a number of write_item operations from one or more trans-
actions from the log must proceed in the reverse order from the order in which
the operations were written in the log.

As we discussed for the NO-UNDO/REDO procedure, step 3 is more efficiently done
by starting from the end of the log and redoing only the last update of each item X.
Whenever an item is redone, it is added to a list of redone items and is not redone
again. A similar procedure can be devised to improve the efficiency of step 2 so that
an item can be undone at most once during recovery. In this case, the earliest 
UNDO is applied first by scanning the log in the forward direction (starting from the
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Figure 23.4
An example of shadow paging.

beginning of the log). Whenever an item is undone, it is added to a list of undone
items and is not undone again.

23.4 Shadow Paging
This recovery scheme does not require the use of a log in a single-user environment.
In a multiuser environment, a log may be needed for the concurrency control
method. Shadow paging considers the database to be made up of a number of fixed-
size disk pages (or disk blocks)—say, n—for recovery purposes. A directory with n
entries5 is constructed, where the ith entry points to the ith database page on disk.
The directory is kept in main memory if it is not too large, and all references—reads
or writes—to database pages on disk go through it. When a transaction begins exe-
cuting, the current directory—whose entries point to the most recent or current
database pages on disk—is copied into a shadow directory. The shadow directory is
then saved on disk while the current directory is used by the transaction.

During transaction execution, the shadow directory is never modified. When a
write_item operation is performed, a new copy of the modified database page is cre-
ated, but the old copy of that page is not overwritten. Instead, the new page is writ-
ten elsewhere—on some previously unused disk block. The current directory entry
is modified to point to the new disk block, whereas the shadow directory is not
modified and continues to point to the old unmodified disk block. Figure 23.4 illus-
trates the concepts of shadow and current directories. For pages updated by the
transaction, two versions are kept. The old version is referenced by the shadow
directory and the new version by the current directory.

5The directory is similar to the page table maintained by the operating system for each process.
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To recover from a failure during transaction execution, it is sufficient to free the
modified database pages and to discard the current directory. The state of the data-
base before transaction execution is available through the shadow directory, and
that state is recovered by reinstating the shadow directory. The database thus is
returned to its state prior to the transaction that was executing when the crash
occurred, and any modified pages are discarded. Committing a transaction corre-
sponds to discarding the previous shadow directory. Since recovery involves neither
undoing nor redoing data items, this technique can be categorized as a NO-
UNDO/NO-REDO technique for recovery.

In a multiuser environment with concurrent transactions, logs and checkpoints must
be incorporated into the shadow paging technique. One disadvantage of shadow
paging is that the updated database pages change location on disk. This makes it dif-
ficult to keep related database pages close together on disk without complex storage
management strategies. Furthermore, if the directory is large, the overhead of writ-
ing shadow directories to disk as transactions commit is significant. A further com-
plication is how to handle garbage collection when a transaction commits. The old
pages referenced by the shadow directory that have been updated must be released
and added to a list of free pages for future use. These pages are no longer needed after
the transaction commits. Another issue is that the operation to migrate between cur-
rent and shadow directories must be implemented as an atomic operation.

23.5 The ARIES Recovery Algorithm
We now describe the ARIES algorithm as an example of a recovery algorithm used
in database systems. It is used in many relational database-related products of IBM.
ARIES uses a steal/no-force approach for writing, and it is based on three concepts:
write-ahead logging, repeating history during redo, and logging changes during
undo. We discussed write-ahead logging in Section 23.1.3. The second concept,
repeating history, means that ARIES will retrace all actions of the database system
prior to the crash to reconstruct the database state when the crash occurred.
Transactions that were uncommitted at the time of the crash (active transactions)
are undone. The third concept, logging during undo, will prevent ARIES from
repeating the completed undo operations if a failure occurs during recovery, which
causes a restart of the recovery process.

The ARIES recovery procedure consists of three main steps: analysis, REDO, and
UNDO. The analysis step identifies the dirty (updated) pages in the buffer6 and the
set of transactions active at the time of the crash. The appropriate point in the log
where the REDO operation should start is also determined. The REDO phase actu-
ally reapplies updates from the log to the database. Generally, the REDO operation is
applied only to committed transactions. However, this is not the case in ARIES.
Certain information in the ARIES log will provide the start point for REDO, from

6The actual buffers may be lost during a crash, since they are in main memory. Additional tables stored
in the log during checkpointing (Dirty Page Table, Transaction Table) allows ARIES to identify this infor-
mation (as discussed later in this section).



822 Chapter 23 Database Recovery Techniques

which REDO operations are applied until the end of the log is reached. Additionally,
information stored by ARIES and in the data pages will allow ARIES to determine
whether the operation to be redone has actually been applied to the database and
therefore does not need to be reapplied. Thus, only the necessary REDO operations
are applied during recovery. Finally, during the UNDO phase, the log is scanned
backward and the operations of transactions that were active at the time of the crash
are undone in reverse order. The information needed for ARIES to accomplish its
recovery procedure includes the log, the Transaction Table, and the Dirty Page
Table. Additionally, checkpointing is used. These tables are maintained by the trans-
action manager and written to the log during checkpointing.

In ARIES, every log record has an associated log sequence number (LSN) that is
monotonically increasing and indicates the address of the log record on disk. Each
LSN corresponds to a specific change (action) of some transaction. Also, each data
page will store the LSN of the latest log record corresponding to a change for that page.
A log record is written for any of the following actions: updating a page (write),
committing a transaction (commit), aborting a transaction (abort), undoing an
update (undo), and ending a transaction (end). The need for including the first
three actions in the log has been discussed, but the last two need some explanation.
When an update is undone, a compensation log record is written in the log. When a
transaction ends, whether by committing or aborting, an end log record is written.

Common fields in all log records include the previous LSN for that transaction, the
transaction ID, and the type of log record. The previous LSN is important because it
links the log records (in reverse order) for each transaction. For an update (write)
action, additional fields in the log record include the page ID for the page that con-
tains the item, the length of the updated item, its offset from the beginning of the
page, the before image of the item, and its after image.

Besides the log, two tables are needed for efficient recovery: the Transaction Table
and the Dirty Page Table, which are maintained by the transaction manager. When
a crash occurs, these tables are rebuilt in the analysis phase of recovery. The
Transaction Table contains an entry for each active transaction, with information
such as the transaction ID, transaction status, and the LSN of the most recent log
record for the transaction. The Dirty Page Table contains an entry for each dirty
page in the buffer, which includes the page ID and the LSN corresponding to the
earliest update to that page.

Checkpointing in ARIES consists of the following: writing a begin_checkpoint record
to the log, writing an end_checkpoint record to the log, and writing the LSN of the
begin_checkpoint record to a special file. This special file is accessed during recovery
to locate the last checkpoint information. With the end_checkpoint record, the con-
tents of both the Transaction Table and Dirty Page Table are appended to the end of
the log. To reduce the cost, fuzzy checkpointing is used so that the DBMS can con-
tinue to execute transactions during checkpointing (see Section 23.1.4).
Additionally, the contents of the DBMS cache do not have to be flushed to disk dur-
ing checkpoint, since the Transaction Table and Dirty Page Table—which are
appended to the log on disk—contain the information needed for recovery. Note
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that if a crash occurs during checkpointing, the special file will refer to the previous
checkpoint, which is used for recovery.

After a crash, the ARIES recovery manager takes over. Information from the last
checkpoint is first accessed through the special file. The analysis phase starts at the
begin_checkpoint record and proceeds to the end of the log. When the end_checkpoint
record is encountered, the Transaction Table and Dirty Page Table are accessed
(recall that these tables were written in the log during checkpointing). During
analysis, the log records being analyzed may cause modifications to these two tables.
For instance, if an end log record was encountered for a transaction T in the
Transaction Table, then the entry for T is deleted from that table. If some other type
of log record is encountered for a transaction T�, then an entry for T� is inserted into
the Transaction Table, if not already present, and the last LSN field is modified. If
the log record corresponds to a change for page P, then an entry would be made for
page P (if not present in the table) and the associated LSN field would be modified.
When the analysis phase is complete, the necessary information for REDO and
UNDO has been compiled in the tables.

The REDO phase follows next. To reduce the amount of unnecessary work, ARIES
starts redoing at a point in the log where it knows (for sure) that previous changes
to dirty pages have already been applied to the database on disk. It can determine this
by finding the smallest LSN, M, of all the dirty pages in the Dirty Page Table, which
indicates the log position where ARIES needs to start the REDO phase. Any changes
corresponding to an LSN < M, for redoable transactions, must have already been
propagated to disk or already been overwritten in the buffer; otherwise, those dirty
pages with that LSN would be in the buffer (and the Dirty Page Table). So, REDO
starts at the log record with LSN = M and scans forward to the end of the log. For
each change recorded in the log, the REDO algorithm would verify whether or not
the change has to be reapplied. For example, if a change recorded in the log pertains
to page P that is not in the Dirty Page Table, then this change is already on disk and
does not need to be reapplied. Or, if a change recorded in the log (with LSN = N,
say) pertains to page P and the Dirty Page Table contains an entry for P with LSN
greater than N, then the change is already present. If neither of these two conditions
hold, page P is read from disk and the LSN stored on that page, LSN(P), is compared
with N. If N < LSN(P), then the change has been applied and the page does not need
to be rewritten to disk.

Once the REDO phase is finished, the database is in the exact state that it was in
when the crash occurred. The set of active transactions—called the undo_set—has
been identified in the Transaction Table during the analysis phase. Now, the UNDO
phase proceeds by scanning backward from the end of the log and undoing the
appropriate actions. A compensating log record is written for each action that is
undone. The UNDO reads backward in the log until every action of the set of trans-
actions in the undo_set has been undone. When this is completed, the recovery
process is finished and normal processing can begin again.

Consider the recovery example shown in Figure 23.5. There are three transactions:
T1, T2, and T3. T1 updates page C, T2 updates pages B and C, and T3 updates page A.
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Figure 23.5
An example of recovery in ARIES. (a) The log at point of crash. (b)
The Transaction and Dirty Page Tables at time of checkpoint. (c)
The Transaction and Dirty Page Tables after the analysis phase.

Figure 23.5(a) shows the partial contents of the log, and Figure 23.5(b) shows the
contents of the Transaction Table and Dirty Page Table. Now, suppose that a crash
occurs at this point. Since a checkpoint has occurred, the address of the associated
begin_checkpoint record is retrieved, which is location 4. The analysis phase starts
from location 4 until it reaches the end. The end_checkpoint record would contain
the Transaction Table and Dirty Page Table in Figure 23.5(b), and the analysis phase
will further reconstruct these tables. When the analysis phase encounters log record
6, a new entry for transaction T3 is made in the Transaction Table and a new entry
for page A is made in the Dirty Page Table. After log record 8 is analyzed, the status
of transaction T2 is changed to committed in the Transaction Table. Figure 23.5(c)
shows the two tables after the analysis phase.
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For the REDO phase, the smallest LSN in the Dirty Page Table is 1. Hence the REDO
will start at log record 1 and proceed with the REDO of updates. The LSNs {1, 2, 6,
7} corresponding to the updates for pages C, B, A, and C, respectively, are not less
than the LSNs of those pages (as shown in the Dirty Page Table). So those data pages
will be read again and the updates reapplied from the log (assuming the actual LSNs
stored on those data pages are less then the corresponding log entry). At this point,
the REDO phase is finished and the UNDO phase starts. From the Transaction Table
(Figure 23.5(c)), UNDO is applied only to the active transaction T3. The UNDO
phase starts at log entry 6 (the last update for T3) and proceeds backward in the log.
The backward chain of updates for transaction T3 (only log record 6 in this exam-
ple) is followed and undone.

23.6 Recovery in Multidatabase Systems
So far, we have implicitly assumed that a transaction accesses a single database. In
some cases, a single transaction, called a multidatabase transaction, may require
access to multiple databases. These databases may even be stored on different types
of DBMSs; for example, some DBMSs may be relational, whereas others are object-
oriented, hierarchical, or network DBMSs. In such a case, each DBMS involved in
the multidatabase transaction may have its own recovery technique and transaction
manager separate from those of the other DBMSs. This situation is somewhat simi-
lar to the case of a distributed database management system (see Chapter 25), where
parts of the database reside at different sites that are connected by a communication
network.

To maintain the atomicity of a multidatabase transaction, it is necessary to have a
two-level recovery mechanism. A global recovery manager, or coordinator, is
needed to maintain information needed for recovery, in addition to the local recov-
ery managers and the information they maintain (log, tables). The coordinator usu-
ally follows a protocol called the two-phase commit protocol, whose two phases
can be stated as follows:

■ Phase 1. When all participating databases signal the coordinator that the
part of the multidatabase transaction involving each has concluded, the
coordinator sends a message prepare for commit to each participant to get
ready for committing the transaction. Each participating database receiving
that message will force-write all log records and needed information for
local recovery to disk and then send a ready to commit or OK signal to the
coordinator. If the force-writing to disk fails or the local transaction cannot
commit for some reason, the participating database sends a cannot commit
or not OK signal to the coordinator. If the coordinator does not receive a
reply from the database within a certain time out interval, it assumes a not
OK response.

■ Phase 2. If all participating databases reply OK, and the coordinator’s vote is
also OK, the transaction is successful, and the coordinator sends a commit
signal for the transaction to the participating databases. Because all the local
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effects of the transaction and information needed for local recovery have
been recorded in the logs of the participating databases, recovery from fail-
ure is now possible. Each participating database completes transaction com-
mit by writing a [commit] entry for the transaction in the log and
permanently updating the database if needed. On the other hand, if one or
more of the participating databases or the coordinator have a not OK
response, the transaction has failed, and the coordinator sends a message to
roll back or UNDO the local effect of the transaction to each participating
database. This is done by undoing the transaction operations, using the log.

The net effect of the two-phase commit protocol is that either all participating data-
bases commit the effect of the transaction or none of them do. In case any of the
participants—or the coordinator—fails, it is always possible to recover to a state
where either the transaction is committed or it is rolled back. A failure during or
before Phase 1 usually requires the transaction to be rolled back, whereas a failure
during Phase 2 means that a successful transaction can recover and commit.

23.7 Database Backup and Recovery 
from Catastrophic Failures

So far, all the techniques we have discussed apply to noncatastrophic failures. A key
assumption has been that the system log is maintained on the disk and is not lost as
a result of the failure. Similarly, the shadow directory must be stored on disk to
allow recovery when shadow paging is used. The recovery techniques we have dis-
cussed use the entries in the system log or the shadow directory to recover from fail-
ure by bringing the database back to a consistent state.

The recovery manager of a DBMS must also be equipped to handle more cata-
strophic failures such as disk crashes. The main technique used to handle such
crashes is a database backup, in which the whole database and the log are periodi-
cally copied onto a cheap storage medium such as magnetic tapes or other large
capacity offline storage devices. In case of a catastrophic system failure, the latest
backup copy can be reloaded from the tape to the disk, and the system can be
restarted.

Data from critical applications such as banking, insurance, stock market, and other
databases is periodically backed up in its entirety and moved to physically separate
safe locations. Subterranean storage vaults have been used to protect such data from
flood, storm, earthquake, or fire damage. Events like the 9/11 terrorist attack in New
York (in 2001) and the Katrina hurricane disaster in New Orleans (in 2005) have
created a greater awareness of disaster recovery of business-critical databases.

To avoid losing all the effects of transactions that have been executed since the last
backup, it is customary to back up the system log at more frequent intervals than
full database backup by periodically copying it to magnetic tape. The system log is
usually substantially smaller than the database itself and hence can be backed up
more frequently. Therefore, users do not lose all transactions they have performed
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since the last database backup. All committed transactions recorded in the portion
of the system log that has been backed up to tape can have their effect on the data-
base redone. A new log is started after each database backup. Hence, to recover from
disk failure, the database is first recreated on disk from its latest backup copy on
tape. Following that, the effects of all the committed transactions whose operations
have been recorded in the backed-up copies of the system log are reconstructed.

23.8 Summary
In this chapter we discussed the techniques for recovery from transaction failures.
The main goal of recovery is to ensure the atomicity property of a transaction. If a
transaction fails before completing its execution, the recovery mechanism has to
make sure that the transaction has no lasting effects on the database. First we gave
an informal outline for a recovery process and then we discussed system concepts
for recovery. These included a discussion of caching, in-place updating versus shad-
owing, before and after images of a data item, UNDO versus REDO recovery opera-
tions, steal/no-steal and force/no-force policies, system checkpointing, and the
write-ahead logging protocol.

Next we discussed two different approaches to recovery: deferred update and imme-
diate update. Deferred update techniques postpone any actual updating of the data-
base on disk until a transaction reaches its commit point. The transaction
force-writes the log to disk before recording the updates in the database. This
approach, when used with certain concurrency control methods, is designed never
to require transaction rollback, and recovery simply consists of redoing the opera-
tions of transactions committed after the last checkpoint from the log. The disad-
vantage is that too much buffer space may be needed, since updates are kept in the
buffers and are not applied to disk until a transaction commits. Deferred update can
lead to a recovery algorithm known as NO-UNDO/REDO. Immediate update tech-
niques may apply changes to the database on disk before the transaction reaches a
successful conclusion. Any changes applied to the database must first be recorded in
the log and force-written to disk so that these operations can be undone if neces-
sary. We also gave an overview of a recovery algorithm for immediate update known
as UNDO/REDO. Another algorithm, known as UNDO/NO-REDO, can also be devel-
oped for immediate update if all transaction actions are recorded in the database
before commit.

We discussed the shadow paging technique for recovery, which keeps track of old
database pages by using a shadow directory. This technique, which is classified as
NO-UNDO/NO-REDO, does not require a log in single-user systems but still needs
the log for multiuser systems. We also presented ARIES, a specific recovery scheme
used in many of IBM’s relational database products. Then we discussed the two-
phase commit protocol, which is used for recovery from failures involving multi-
database transactions. Finally, we discussed recovery from catastrophic failures,
which is typically done by backing up the database and the log to tape. The log can
be backed up more frequently than the database, and the backup log can be used to
redo operations starting from the last database backup.
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Review Questions
23.1. Discuss the different types of transaction failures. What is meant by cata-

strophic failure?

23.2. Discuss the actions taken by the read_item and write_item operations on a
database.

23.3. What is the system log used for? What are the typical kinds of entries in a
system log? What are checkpoints, and why are they important? What are
transaction commit points, and why are they important?

23.4. How are buffering and caching techniques used by the recovery subsystem?

23.5. What are the before image (BFIM) and after image (AFIM) of a data item?
What is the difference between in-place updating and shadowing, with
respect to their handling of BFIM and AFIM?

23.6. What are UNDO-type and REDO-type log entries?

23.7. Describe the write-ahead logging protocol.

23.8. Identify three typical lists of transactions that are maintained by the recovery
subsystem.

23.9. What is meant by transaction rollback? What is meant by cascading rollback?
Why do practical recovery methods use protocols that do not permit cascad-
ing rollback? Which recovery techniques do not require any rollback?

23.10. Discuss the UNDO and REDO operations and the recovery techniques that
use each.

23.11. Discuss the deferred update technique of recovery. What are the advantages
and disadvantages of this technique? Why is it called the NO-UNDO/REDO
method?

23.12. How can recovery handle transaction operations that do not affect the data-
base, such as the printing of reports by a transaction?

23.13. Discuss the immediate update recovery technique in both single-user and
multiuser environments. What are the advantages and disadvantages of
immediate update?

23.14. What is the difference between the UNDO/REDO and the UNDO/NO-REDO
algorithms for recovery with immediate update? Develop the outline for an
UNDO/NO-REDO algorithm.

23.15. Describe the shadow paging recovery technique. Under what circumstances
does it not require a log?

23.16. Describe the three phases of the ARIES recovery method.

23.17. What are log sequence numbers (LSNs) in ARIES? How are they used? What
information do the Dirty Page Table and Transaction Table contain?
Describe how fuzzy checkpointing is used in ARIES.
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[checkpoint]

[start_transaction, T1]

[start_transaction, T2]

[start_transaction, T3]

[read_item, T1, A]

[read_item, T1, D]

[read_item, T4, D]

[read_item, T2, D]

[read_item, T2, B]

[write_item, T1, D, 20, 25]

[write_item, T2, B, 12, 18]

[read_item, T4, A]

[write_item, T4, D, 25, 15]

[write_item, T3, C, 30, 40]

[write_item, T2, D, 15, 25]

[write_item, T4, A, 30, 20]

[commit, T1]

[commit, T4]

[start_transaction, T4]

System crash

Figure 23.6
A sample schedule and its
corresponding log.

23.18. What do the terms steal/no-steal and force/no-force mean with regard to
buffer management for transaction processing?

23.19. Describe the two-phase commit protocol for multidatabase transactions.

23.20. Discuss how disaster recovery from catastrophic failures is handled.

Exercises
23.21. Suppose that the system crashes before the [read_item, T3, A] entry is written

to the log in Figure 23.1(b). Will that make any difference in the recovery
process?

23.22. Suppose that the system crashes before the [write_item, T2, D, 25, 26] entry is
written to the log in Figure 23.1(b). Will that make any difference in the
recovery process?

23.23. Figure 23.6 shows the log corresponding to a particular schedule at the point
of a system crash for four transactions T1, T2, T3, and T4. Suppose that we
use the immediate update protocol with checkpointing. Describe the recovery
process from the system crash. Specify which transactions are rolled back,
which operations in the log are redone and which (if any) are undone, and
whether any cascading rollback takes place.
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23.24. Suppose that we use the deferred update protocol for the example in Figure
23.6. Show how the log would be different in the case of deferred update by
removing the unnecessary log entries; then describe the recovery process,
using your modified log. Assume that only REDO operations are applied,
and specify which operations in the log are redone and which are ignored.

23.25. How does checkpointing in ARIES differ from checkpointing as described in
Section 23.1.4?

23.26. How are log sequence numbers used by ARIES to reduce the amount of
REDO work needed for recovery? Illustrate with an example using the infor-
mation shown in Figure 23.5. You can make your own assumptions as to
when a page is written to disk.

23.27. What implications would a no-steal/force buffer management policy have
on checkpointing and recovery?

Choose the correct answer for each of the following multiple-choice questions:

23.28. Incremental logging with deferred updates implies that the recovery system
must necessarily

a. store the old value of the updated item in the log.

b. store the new value of the updated item in the log.

c. store both the old and new value of the updated item in the log.

d. store only the Begin Transaction and Commit Transaction records in the
log.

23.29. The write-ahead logging (WAL) protocol simply means that

a. writing of a data item should be done ahead of any logging operation.

b. the log record for an operation should be written before the actual data is
written.

c. all log records should be written before a new transaction begins execu-
tion.

d. the log never needs to be written to disk.

23.30. In case of transaction failure under a deferred update incremental logging
scheme, which of the following will be needed?

a. an undo operation

b. a redo operation

c. an undo and redo operation

d. none of the above

23.31. For incremental logging with immediate updates, a log record for a transac-
tion would contain

a. a transaction name, a data item name, and the old and new value of the
item.
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b. a transaction name, a data item name, and the old value of the item.

c. a transaction name, a data item name, and the new value of the item.

d. a transaction name and a data item name.

23.32. For correct behavior during recovery, undo and redo operations must be

a. commutative.

b. associative.

c. idempotent.

d. distributive.

23.33. When a failure occurs, the log is consulted and each operation is either
undone or redone. This is a problem because

a. searching the entire log is time consuming.

b. many redos are unnecessary.

c. both (a) and (b).

d. none of the above.

23.34. When using a log-based recovery scheme, it might improve performance as
well as providing a recovery mechanism by

a. writing the log records to disk when each transaction commits.

b. writing the appropriate log records to disk during the transaction’s execu-
tion.

c. waiting to write the log records until multiple transactions commit and
writing them as a batch.

d. never writing the log records to disk.

23.35. There is a possibility of a cascading rollback when

a. a transaction writes items that have been written only by a committed
transaction.

b. a transaction writes an item that is previously written by an uncommitted
transaction.

c. a transaction reads an item that is previously written by an uncommitted
transaction.

d. both (b) and (c).

23.36. To cope with media (disk) failures, it is necessary

a. for the DBMS to only execute transactions in a single user environment.

b. to keep a redundant copy of the database.

c. to never abort a transaction.

d. all of the above.



23.37. If the shadowing approach is used for flushing a data item back to disk, then

a. the item is written to disk only after the transaction commits.

b. the item is written to a different location on disk.

c. the item is written to disk before the transaction commits.

d. the item is written to the same disk location from which it was read.
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Database Security

This chapter discusses techniques for securing data-
bases against a variety of threats. It also presents

schemes of providing access privileges to authorized users. Some of the security
threats to databases—such as SQL Injection—will be presented. At the end of the
chapter we also summarize how a commercial RDBMS—specifically, the Oracle sys-
tem—provides different types of security. We start in Section 24.1 with an introduc-
tion to security issues and the threats to databases, and we give an overview of the
control measures that are covered in the rest of this chapter. We also comment on
the relationship between data security and privacy as it applies to personal informa-
tion. Section 24.2 discusses the mechanisms used to grant and revoke privileges in
relational database systems and in SQL, mechanisms that are often referred to as
discretionary access control. In Section 24.3, we present an overview of the mech-
anisms for enforcing multiple levels of security—a particular concern in database
system security that is known as mandatory access control. Section 24.3 also intro-
duces the more recently developed strategies of role-based access control, and
label-based and row-based security. Section 24.3 also provides a brief discussion of
XML access control. Section 24.4 discusses a major threat to databases called SQL
Injection, and discusses some of the proposed preventive measures against it.
Section 24.5 briefly discusses the security problem in statistical databases. Section
24.6 introduces the topic of flow control and mentions problems associated with
covert channels. Section 24.7 provides a brief summary of encryption and symmet-
ric key and asymmetric (public) key infrastructure schemes. It also discusses digital
certificates. Section 24.8 introduces privacy-preserving techniques, and Section 24.9
presents the current challenges to database security. In Section 24.10, we discuss
Oracle label-based security. Finally, Section 24.11 summarizes the chapter. Readers
who are interested only in basic database security mechanisms will find it sufficient
to cover the material in Sections 24.1 and 24.2.

24chapter 24
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24.1 Introduction to Database Security Issues1

24.1.1 Types of Security
Database security is a broad area that addresses many issues, including the following:

■ Various legal and ethical issues regarding the right to access certain informa-
tion—for example, some information may be deemed to be private and can-
not be accessed legally by unauthorized organizations or persons. In the
United States, there are numerous laws governing privacy of information.

■ Policy issues at the governmental, institutional, or corporate level as to what
kinds of information should not be made publicly available—for example,
credit ratings and personal medical records.

■ System-related issues such as the system levels at which various security func-
tions should be enforced—for example, whether a security function should
be handled at the physical hardware level, the operating system level, or the
DBMS level.

■ The need in some organizations to identify multiple security levels and to
categorize the data and users based on these classifications—for example,
top secret, secret, confidential, and unclassified. The security policy of the
organization with respect to permitting access to various classifications of
data must be enforced.

Threats to Databases. Threats to databases can result in the loss or degradation
of some or all of the following commonly accepted security goals: integrity, avail-
ability, and confidentiality.

■ Loss of integrity. Database integrity refers to the requirement that informa-
tion be protected from improper modification. Modification of data
includes creation, insertion, updating, changing the status of data, and dele-
tion. Integrity is lost if unauthorized changes are made to the data by either
intentional or accidental acts. If the loss of system or data integrity is not
corrected, continued use of the contaminated system or corrupted data
could result in inaccuracy, fraud, or erroneous decisions.

■ Loss of availability. Database availability refers to making objects available
to a human user or a program to which they have a legitimate right.

■ Loss of confidentiality. Database confidentiality refers to the protection of
data from unauthorized disclosure. The impact of unauthorized disclosure
of confidential information can range from violation of the Data Privacy Act
to the jeopardization of national security. Unauthorized, unanticipated, or
unintentional disclosure could result in loss of public confidence, embar-
rassment, or legal action against the organization.

1The substantial contribution of Fariborz Farahmand and Bharath Rengarajan to this and subsequent
sections in this chapter is much appreciated.
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To protect databases against these types of threats, it is common to implement four
kinds of control measures: access control, inference control, flow control, and encryp-
tion. We discuss each of these in this chapter.

In a multiuser database system, the DBMS must provide techniques to enable cer-
tain users or user groups to access selected portions of a database without gaining
access to the rest of the database. This is particularly important when a large inte-
grated database is to be used by many different users within the same organization.
For example, sensitive information such as employee salaries or performance
reviews should be kept confidential from most of the database system’s users. A
DBMS typically includes a database security and authorization subsystem that is
responsible for ensuring the security of portions of a database against unauthorized
access. It is now customary to refer to two types of database security mechanisms:

■ Discretionary security mechanisms. These are used to grant privileges to
users, including the capability to access specific data files, records, or fields in
a specified mode (such as read, insert, delete, or update).

■ Mandatory security mechanisms. These are used to enforce multilevel
security by classifying the data and users into various security classes (or lev-
els) and then implementing the appropriate security policy of the organiza-
tion. For example, a typical security policy is to permit users at a certain
classification (or clearance) level to see only the data items classified at the
user’s own (or lower) classification level. An extension of this is role-based
security, which enforces policies and privileges based on the concept of orga-
nizational roles.

We discuss discretionary security in Section 24.2 and mandatory and role-based
security in Section 24.3.

24.1.2 Control Measures
Four main control measures are used to provide security of data in databases:

■ Access control

■ Inference control

■ Flow control

■ Data encryption

A security problem common to computer systems is that of preventing unautho-
rized persons from accessing the system itself, either to obtain information or to
make malicious changes in a portion of the database. The security mechanism of a
DBMS must include provisions for restricting access to the database system as a
whole. This function, called access control, is handled by creating user accounts and
passwords to control the login process by the DBMS. We discuss access control tech-
niques in Section 24.1.3.

Statistical databases are used to provide statistical information or summaries of
values based on various criteria. For example, a database for population statistics
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may provide statistics based on age groups, income levels, household size, education
levels, and other criteria. Statistical database users such as government statisticians
or market research firms are allowed to access the database to retrieve statistical
information about a population but not to access the detailed confidential informa-
tion about specific individuals. Security for statistical databases must ensure that
information about individuals cannot be accessed. It is sometimes possible to
deduce or infer certain facts concerning individuals from queries that involve only
summary statistics on groups; consequently, this must not be permitted either. This
problem, called statistical database security, is discussed briefly in Section 24.4.
The corresponding control measures are called inference control measures.

Another security issue is that of flow control, which prevents information from
flowing in such a way that it reaches unauthorized users. It is discussed in Section
24.6. Channels that are pathways for information to flow implicitly in ways that vio-
late the security policy of an organization are called covert channels. We briefly dis-
cuss some issues related to covert channels in Section 24.6.1.

A final control measure is data encryption, which is used to protect sensitive data
(such as credit card numbers) that is transmitted via some type of communications
network. Encryption can be used to provide additional protection for sensitive por-
tions of a database as well. The data is encoded using some coding algorithm. An
unauthorized user who accesses encoded data will have difficulty deciphering it, but
authorized users are given decoding or decrypting algorithms (or keys) to decipher
the data. Encrypting techniques that are very difficult to decode without a key have
been developed for military applications. Section 24.7 briefly discusses encryption
techniques, including popular techniques such as public key encryption, which is
heavily used to support Web-based transactions against databases, and digital signa-
tures, which are used in personal communications.

A comprehensive discussion of security in computer systems and databases is out-
side the scope of this textbook. We give only a brief overview of database security
techniques here. The interested reader can refer to several of the references dis-
cussed in the Selected Bibliography at the end of this chapter for a more compre-
hensive discussion.

24.1.3 Database Security and the DBA
As we discussed in Chapter 1, the database administrator (DBA) is the central
authority for managing a database system. The DBA’s responsibilities include grant-
ing privileges to users who need to use the system and classifying users and data in
accordance with the policy of the organization. The DBA has a DBA account in the
DBMS, sometimes called a system or superuser account, which provides powerful
capabilities that are not made available to regular database accounts and users.2

DBA-privileged commands include commands for granting and revoking privileges

2This account is similar to the root or superuser accounts that are given to computer system administra-
tors, which allow access to restricted operating system commands.
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to individual accounts, users, or user groups and for performing the following types
of actions:

1. Account creation. This action creates a new account and password for a user
or a group of users to enable access to the DBMS.

2. Privilege granting. This action permits the DBA to grant certain privileges
to certain accounts.

3. Privilege revocation. This action permits the DBA to revoke (cancel) certain
privileges that were previously given to certain accounts.

4. Security level assignment. This action consists of assigning user accounts to
the appropriate security clearance level.

The DBA is responsible for the overall security of the database system. Action 1 in
the preceding list is used to control access to the DBMS as a whole, whereas actions
2 and 3 are used to control discretionary database authorization, and action 4 is used
to control mandatory authorization.

24.1.4 Access Control, User Accounts, and Database Audits
Whenever a person or a group of persons needs to access a database system, the
individual or group must first apply for a user account. The DBA will then create a
new account number and password for the user if there is a legitimate need to
access the database. The user must log in to the DBMS by entering the account
number and password whenever database access is needed. The DBMS checks that
the account number and password are valid; if they are, the user is permitted to use
the DBMS and to access the database. Application programs can also be considered
users and are required to log in to the database (see Chapter 13).

It is straightforward to keep track of database users and their accounts and pass-
words by creating an encrypted table or file with two fields: AccountNumber and
Password. This table can easily be maintained by the DBMS. Whenever a new
account is created, a new record is inserted into the table. When an account is can-
celed, the corresponding record must be deleted from the table.

The database system must also keep track of all operations on the database that are
applied by a certain user throughout each login session, which consists of the
sequence of database interactions that a user performs from the time of logging in
to the time of logging off. When a user logs in, the DBMS can record the user’s
account number and associate it with the computer or device from which the user
logged in. All operations applied from that computer or device are attributed to the
user’s account until the user logs off. It is particularly important to keep track of
update operations that are applied to the database so that, if the database is tam-
pered with, the DBA can determine which user did the tampering.

To keep a record of all updates applied to the database and of particular users who
applied each update, we can modify the system log. Recall from Chapters 21 and 23
that the system log includes an entry for each operation applied to the database that
may be required for recovery from a transaction failure or system crash. We can
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expand the log entries so that they also include the account number of the user and
the online computer or device ID that applied each operation recorded in the log. If
any tampering with the database is suspected, a database audit is performed, which
consists of reviewing the log to examine all accesses and operations applied to the
database during a certain time period. When an illegal or unauthorized operation is
found, the DBA can determine the account number used to perform the operation.
Database audits are particularly important for sensitive databases that are updated
by many transactions and users, such as a banking database that is updated by many
bank tellers. A database log that is used mainly for security purposes is sometimes
called an audit trail.

24.1.5 Sensitive Data and Types of Disclosures
Sensitivity of data is a measure of the importance assigned to the data by its owner,
for the purpose of denoting its need for protection. Some databases contain only
sensitive data while other databases may contain no sensitive data at all. Handling
databases that fall at these two extremes is relatively easy, because these can be cov-
ered by access control, which is explained in the next section. The situation becomes
tricky when some of the data is sensitive while other data is not.

Several factors can cause data to be classified as sensitive:

1. Inherently sensitive. The value of the data itself may be so revealing or con-
fidential that it becomes sensitive—for example, a person’s salary or that a
patient has HIV/AIDS.

2. From a sensitive source. The source of the data may indicate a need for
secrecy—for example, an informer whose identity must be kept secret.

3. Declared sensitive. The owner of the data may have explicitly declared it as
sensitive.

4. A sensitive attribute or sensitive record. The particular attribute or record
may have been declared sensitive—for example, the salary attribute of an
employee or the salary history record in a personnel database.

5. Sensitive in relation to previously disclosed data. Some data may not be
sensitive by itself but will become sensitive in the presence of some other
data—for example, the exact latitude and longitude information for a loca-
tion where some previously recorded event happened that was later deemed
sensitive.

It is the responsibility of the database administrator and security administrator to
collectively enforce the security policies of an organization. This dictates whether
access should be permitted to a certain database attribute (also known as a table col-
umn or a data element) or not for individual users or for categories of users. Several
factors need to be considered before deciding whether it is safe to reveal the data.
The three most important factors are data availability, access acceptability, and
authenticity assurance.

1. Data availability. If a user is updating a field, then this field becomes inac-
cessible and other users should not be able to view this data. This blocking is
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only temporary and only to ensure that no user sees any inaccurate data.
This is typically handled by the concurrency control mechanism (see
Chapter 22).

2. Access acceptability. Data should only be revealed to authorized users. A
database administrator may also deny access to a user request even if the
request does not directly access a sensitive data item, on the grounds that the
requested data may reveal information about the sensitive data that the user
is not authorized to have.

3. Authenticity assurance. Before granting access, certain external characteris-
tics about the user may also be considered. For example, a user may only be
permitted access during working hours. The system may track previous
queries to ensure that a combination of queries does not reveal sensitive
data. The latter is particularly relevant to statistical database queries (see
Section 24.5).

The term precision, when used in the security area, refers to allowing as much as
possible of the data to be available, subject to protecting exactly the subset of data
that is sensitive. The definitions of security versus precision are as follows:

■ Security: Means of ensuring that data is kept safe from corruption and that
access to it is suitably controlled. To provide security means to disclose only
nonsensitive data, and reject any query that references a sensitive field.

■ Precision: To protect all sensitive data while disclosing as much nonsensitive
data as possible.

The ideal combination is to maintain perfect security with maximum precision. If
we want to maintain security, some sacrifice has to be made with precision. Hence
there is typically a tradeoff between security and precision.

24.1.6 Relationship between Information Security 
versus Information Privacy

The rapid advancement of the use of information technology (IT) in industry, gov-
ernment, and academia raises challenging questions and problems regarding the
protection and use of personal information. Questions of who has what rights to
information about individuals for which purposes become more important as we
move toward a world in which it is technically possible to know just about anything
about anyone.

Deciding how to design privacy considerations in technology for the future includes
philosophical, legal, and practical dimensions. There is a considerable overlap
between issues related to access to resources (security) and issues related to appro-
priate use of information (privacy). We now define the difference between security
versus privacy.

Security in information technology refers to many aspects of protecting a system
from unauthorized use, including authentication of users, information encryption,
access control, firewall policies, and intrusion detection. For our purposes here, we
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will limit our treatment of security to the concepts associated with how well a sys-
tem can protect access to information it contains. The concept of privacy goes
beyond security. Privacy examines how well the use of personal information that
the system acquires about a user conforms to the explicit or implicit assumptions
regarding that use. From an end user perspective, privacy can be considered from
two different perspectives: preventing storage of personal information versus
ensuring appropriate use of personal information.

For the purposes of this chapter, a simple but useful definition of privacy is the abil-
ity of individuals to control the terms under which their personal information is
acquired and used. In summary, security involves technology to ensure that informa-
tion is appropriately protected. Security is a required building block for privacy to
exist. Privacy involves mechanisms to support compliance with some basic principles
and other explicitly stated policies. One basic principle is that people should be
informed about information collection, told in advance what will be done with their
information, and given a reasonable opportunity to approve of such use of the infor-
mation. A related concept, trust, relates to both security and privacy, and is seen as
increasing when it is perceived that both security and privacy are provided for.

24.2 Discretionary Access Control Based 
on Granting and Revoking Privileges

The typical method of enforcing discretionary access control in a database system
is based on the granting and revoking of privileges. Let us consider privileges in the
context of a relational DBMS. In particular, we will discuss a system of privileges
somewhat similar to the one originally developed for the SQL language (see
Chapters 4 and 5). Many current relational DBMSs use some variation of this tech-
nique. The main idea is to include statements in the query language that allow the
DBA and selected users to grant and revoke privileges.

24.2.1 Types of Discretionary Privileges
In SQL2 and later versions,3 the concept of an authorization identifier is used to
refer, roughly speaking, to a user account (or group of user accounts). For simplic-
ity, we will use the words user or account interchangeably in place of authorization
identifier. The DBMS must provide selective access to each relation in the database
based on specific accounts. Operations may also be controlled; thus, having an
account does not necessarily entitle the account holder to all the functionality pro-
vided by the DBMS. Informally, there are two levels for assigning privileges to use
the database system:

■ The account level. At this level, the DBA specifies the particular privileges
that each account holds independently of the relations in the database.

■ The relation (or table) level. At this level, the DBA can control the privilege
to access each individual relation or view in the database.

3Discretionary privileges were incorporated into SQL2 and are applicable to later versions of SQL.
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The privileges at the account level apply to the capabilities provided to the account
itself and can include the CREATE SCHEMA or CREATE TABLE privilege, to create a
schema or base relation; the CREATE VIEW privilege; the ALTER privilege, to apply
schema changes such as adding or removing attributes from relations; the DROP
privilege, to delete relations or views; the MODIFY privilege, to insert, delete, or
update tuples; and the SELECT privilege, to retrieve information from the database
by using a SELECT query. Notice that these account privileges apply to the account
in general. If a certain account does not have the CREATE TABLE privilege, no rela-
tions can be created from that account. Account-level privileges are not defined as
part of SQL2; they are left to the DBMS implementers to define. In earlier versions
of SQL, a CREATETAB privilege existed to give an account the privilege to create
tables (relations).

The second level of privileges applies to the relation level, whether they are base
relations or virtual (view) relations. These privileges are defined for SQL2. In the
following discussion, the term relation may refer either to a base relation or to a
view, unless we explicitly specify one or the other. Privileges at the relation level
specify for each user the individual relations on which each type of command can
be applied. Some privileges also refer to individual columns (attributes) of relations.
SQL2 commands provide privileges at the relation and attribute level only. Although
this is quite general, it makes it difficult to create accounts with limited privileges.
The granting and revoking of privileges generally follow an authorization model for
discretionary privileges known as the access matrix model, where the rows of a
matrix M represent subjects (users, accounts, programs) and the columns represent
objects (relations, records, columns, views, operations). Each position M(i, j) in the
matrix represents the types of privileges (read, write, update) that subject i holds on
object j.

To control the granting and revoking of relation privileges, each relation R in a data-
base is assigned an owner account, which is typically the account that was used
when the relation was created in the first place. The owner of a relation is given all
privileges on that relation. In SQL2, the DBA can assign an owner to a whole
schema by creating the schema and associating the appropriate authorization iden-
tifier with that schema, using the CREATE SCHEMA command (see Section 4.1.1).
The owner account holder can pass privileges on any of the owned relations to other
users by granting privileges to their accounts. In SQL the following types of privi-
leges can be granted on each individual relation R:

■ SELECT (retrieval or read) privilege on R. Gives the account retrieval privi-
lege. In SQL this gives the account the privilege to use the SELECT statement
to retrieve tuples from R.

■ Modification privileges on R. This gives the account the capability to mod-
ify the tuples of R. In SQL this includes three privileges: UPDATE, DELETE,
and INSERT. These correspond to the three SQL commands (see Section 4.4)
for modifying a table R. Additionally, both the INSERT and UPDATE privi-
leges can specify that only certain attributes of R can be modified by the
account.
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■ References privilege on R. This gives the account the capability to reference
(or refer to) a relation R when specifying integrity constraints. This privilege
can also be restricted to specific attributes of R.

Notice that to create a view, the account must have the SELECT privilege on all rela-
tions involved in the view definition in order to specify the query that corresponds
to the view.

24.2.2 Specifying Privileges through the Use of Views
The mechanism of views is an important discretionary authorization mechanism in
its own right. For example, if the owner A of a relation R wants another account B to
be able to retrieve only some fields of R, then A can create a view V of R that
includes only those attributes and then grant SELECT on V to B. The same applies to
limiting B to retrieving only certain tuples of R; a view V�can be created by defining
the view by means of a query that selects only those tuples from R that A wants to
allow B to access. We will illustrate this discussion with the example given in Section
24.2.5.

24.2.3 Revoking of Privileges
In some cases it is desirable to grant a privilege to a user temporarily. For example,
the owner of a relation may want to grant the SELECT privilege to a user for a spe-
cific task and then revoke that privilege once the task is completed. Hence, a mech-
anism for revoking privileges is needed. In SQL a REVOKE command is included for
the purpose of canceling privileges. We will see how the REVOKE command is used
in the example in Section 24.2.5.

24.2.4 Propagation of Privileges Using the GRANT OPTION
Whenever the owner A of a relation R grants a privilege on R to another account B,
the privilege can be given to B with or without the GRANT OPTION. If the GRANT
OPTION is given, this means that B can also grant that privilege on R to other
accounts. Suppose that B is given the GRANT OPTION by A and that B then grants
the privilege on R to a third account C, also with the GRANT OPTION. In this way,
privileges on R can propagate to other accounts without the knowledge of the
owner of R. If the owner account A now revokes the privilege granted to B, all the
privileges that B propagated based on that privilege should automatically be revoked
by the system.

It is possible for a user to receive a certain privilege from two or more sources. For
example, A4 may receive a certain UPDATE R privilege from both A2 and A3. In such
a case, if A2 revokes this privilege from A4, A4 will still continue to have the privilege
by virtue of having been granted it from A3. If A3 later revokes the privilege from
A4, A4 totally loses the privilege. Hence, a DBMS that allows propagation of privi-
leges must keep track of how all the privileges were granted so that revoking of priv-
ileges can be done correctly and completely.
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24.2.5 An Example to Illustrate Granting and Revoking 
of Privileges

Suppose that the DBA creates four accounts—A1, A2, A3, and A4—and wants only
A1 to be able to create base relations. To do this, the DBA must issue the following
GRANT command in SQL:

GRANT CREATETAB TO A1;

The CREATETAB (create table) privilege gives account A1 the capability to create
new database tables (base relations) and is hence an account privilege. This privilege
was part of earlier versions of SQL but is now left to each individual system imple-
mentation to define.

In SQL2 the same effect can be accomplished by having the DBA issue a CREATE
SCHEMA command, as follows:

CREATE SCHEMA EXAMPLE AUTHORIZATION A1;

User account A1 can now create tables under the schema called EXAMPLE. To con-
tinue our example, suppose that A1 creates the two base relations EMPLOYEE and
DEPARTMENT shown in Figure 24.1; A1 is then the owner of these two relations and
hence has all the relation privileges on each of them.

Next, suppose that account A1 wants to grant to account A2 the privilege to insert
and delete tuples in both of these relations. However, A1 does not want A2 to be able
to propagate these privileges to additional accounts. A1 can issue the following com-
mand:

GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO A2;

Notice that the owner account A1 of a relation automatically has the GRANT
OPTION, allowing it to grant privileges on the relation to other accounts. However,
account A2 cannot grant INSERT and DELETE privileges on the EMPLOYEE and
DEPARTMENT tables because A2 was not given the GRANT OPTION in the preceding
command.

Next, suppose that A1 wants to allow account A3 to retrieve information from either
of the two tables and also to be able to propagate the SELECT privilege to other
accounts. A1 can issue the following command:

GRANT SELECT ON EMPLOYEE, DEPARTMENT TO A3 WITH GRANT OPTION;

DEPARTMENT

DnameDnumber Mgr_ssn

Name Bdate Address Sex Salary Dno

EMPLOYEE

Ssn

Figure 24.1
Schemas for the two
relations EMPLOYEE
and DEPARTMENT.
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The clause WITH GRANT OPTION means that A3 can now propagate the privilege to
other accounts by using GRANT. For example, A3 can grant the SELECT privilege on
the EMPLOYEE relation to A4 by issuing the following command:

GRANT SELECT ON EMPLOYEE TO A4;

Notice that A4 cannot propagate the SELECT privilege to other accounts because
the GRANT OPTION was not given to A4.

Now suppose that A1 decides to revoke the SELECT privilege on the EMPLOYEE
relation from A3; A1 then can issue this command:

REVOKE SELECT ON EMPLOYEE FROM A3;

The DBMS must now revoke the SELECT privilege on EMPLOYEE from A3, and it
must also automatically revoke the SELECT privilege on EMPLOYEE from A4. This is
because A3 granted that privilege to A4, but A3 does not have the privilege any
more.

Next, suppose that A1 wants to give back to A3 a limited capability to SELECT from
the EMPLOYEE relation and wants to allow A3 to be able to propagate the privilege.
The limitation is to retrieve only the Name, Bdate, and Address attributes and only
for the tuples with Dno = 5. A1 then can create the following view:

CREATE VIEW A3EMPLOYEE AS
SELECT Name, Bdate, Address
FROM EMPLOYEE
WHERE Dno = 5;

After the view is created, A1 can grant SELECT on the view A3EMPLOYEE to A3 as
follows:

GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT OPTION;

Finally, suppose that A1 wants to allow A4 to update only the Salary attribute of
EMPLOYEE; A1 can then issue the following command:

GRANT UPDATE ON EMPLOYEE (Salary) TO A4;

The UPDATE and INSERT privileges can specify particular attributes that may be
updated or inserted in a relation. Other privileges (SELECT, DELETE) are not attrib-
ute specific, because this specificity can easily be controlled by creating the appro-
priate views that include only the desired attributes and granting the corresponding
privileges on the views. However, because updating views is not always possible (see
Chapter 5), the UPDATE and INSERT privileges are given the option to specify the
particular attributes of a base relation that may be updated.

24.2.6 Specifying Limits on Propagation of Privileges
Techniques to limit the propagation of privileges have been developed, although
they have not yet been implemented in most DBMSs and are not a part of SQL.
Limiting horizontal propagation to an integer number i means that an account B
given the GRANT OPTION can grant the privilege to at most i other accounts.
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Vertical propagation is more complicated; it limits the depth of the granting of
privileges. Granting a privilege with a vertical propagation of zero is equivalent to
granting the privilege with no GRANT OPTION. If account A grants a privilege to
account B with the vertical propagation set to an integer number j > 0, this means
that the account B has the GRANT OPTION on that privilege, but B can grant the
privilege to other accounts only with a vertical propagation less than j. In effect, ver-
tical propagation limits the sequence of GRANT OPTIONS that can be given from
one account to the next based on a single original grant of the privilege.

We briefly illustrate horizontal and vertical propagation limits—which are not
available currently in SQL or other relational systems—with an example. Suppose
that A1 grants SELECT to A2 on the EMPLOYEE relation with horizontal propaga-
tion equal to 1 and vertical propagation equal to 2. A2 can then grant SELECT to at
most one account because the horizontal propagation limitation is set to 1.
Additionally, A2 cannot grant the privilege to another account except with vertical
propagation set to 0 (no GRANT OPTION) or 1; this is because A2 must reduce the
vertical propagation by at least 1 when passing the privilege to others. In addition,
the horizontal propagation must be less than or equal to the originally granted hor-
izontal propagation. For example, if account A grants a privilege to account B with
the horizontal propagation set to an integer number j > 0, this means that B can
grant the privilege to other accounts only with a horizontal propagation less than or
equal to j. As this example shows, horizontal and vertical propagation techniques are
designed to limit the depth and breadth of propagation of privileges.

24.3 Mandatory Access Control and Role-Based
Access Control for Multilevel Security

The discretionary access control technique of granting and revoking privileges on
relations has traditionally been the main security mechanism for relational database
systems. This is an all-or-nothing method: A user either has or does not have a cer-
tain privilege. In many applications, an additional security policy is needed that clas-
sifies data and users based on security classes. This approach, known as mandatory
access control (MAC), would typically be combined with the discretionary access
control mechanisms described in Section 24.2. It is important to note that most
commercial DBMSs currently provide mechanisms only for discretionary access
control. However, the need for multilevel security exists in government, military,
and intelligence applications, as well as in many industrial and corporate applica-
tions. Some DBMS vendors—for example, Oracle—have released special versions
of their RDBMSs that incorporate mandatory access control for government use.

Typical security classes are top secret (TS), secret (S), confidential (C), and unclas-
sified (U), where TS is the highest level and U the lowest. Other more complex secu-
rity classification schemes exist, in which the security classes are organized in a
lattice. For simplicity, we will use the system with four security classification levels,
where TS ≥ S ≥ C ≥ U, to illustrate our discussion. The commonly used model for
multilevel security, known as the Bell-LaPadula model, classifies each subject (user,
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account, program) and object (relation, tuple, column, view, operation) into one of
the security classifications TS, S, C, or U. We will refer to the clearance (classifica-
tion) of a subject S as class(S) and to the classification of an object O as class(O).
Two restrictions are enforced on data access based on the subject/object classifica-
tions:

1. A subject S is not allowed read access to an object O unless class(S) ≥
class(O). This is known as the simple security property.

2. A subject S is not allowed to write an object O unless class(S) ≤ class(O). This
is known as the star property (or *-property).

The first restriction is intuitive and enforces the obvious rule that no subject can
read an object whose security classification is higher than the subject’s security
clearance. The second restriction is less intuitive. It prohibits a subject from writing
an object at a lower security classification than the subject’s security clearance.
Violation of this rule would allow information to flow from higher to lower classifi-
cations, which violates a basic tenet of multilevel security. For example, a user (sub-
ject) with TS clearance may make a copy of an object with classification TS and then
write it back as a new object with classification U, thus making it visible throughout
the system.

To incorporate multilevel security notions into the relational database model, it is
common to consider attribute values and tuples as data objects. Hence, each attrib-
ute A is associated with a classification attribute C in the schema, and each attrib-
ute value in a tuple is associated with a corresponding security classification. In
addition, in some models, a tuple classification attribute TC is added to the relation
attributes to provide a classification for each tuple as a whole. The model we
describe here is known as the multilevel model, because it allows classifications at
multiple security levels. A multilevel relation schema R with n attributes would be
represented as:

R(A1, C1, A2, C2, ..., An, Cn, TC)

where each Ci represents the classification attribute associated with attribute Ai.

The value of the tuple classification attribute TC in each tuple t—which is the
highest of all attribute classification values within t—provides a general classifica-
tion for the tuple itself. Each attribute classification Ci provides a finer security clas-
sification for each attribute value within the tuple. The value of TC in each tuple t is
the highest of all attribute classification values Ci within t.

The apparent key of a multilevel relation is the set of attributes that would have
formed the primary key in a regular (single-level) relation. A multilevel relation will
appear to contain different data to subjects (users) with different clearance levels. In
some cases, it is possible to store a single tuple in the relation at a higher classifica-
tion level and produce the corresponding tuples at a lower-level classification
through a process known as filtering. In other cases, it is necessary to store two or
more tuples at different classification levels with the same value for the apparent key.
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This leads to the concept of polyinstantiation,4 where several tuples can have the
same apparent key value but have different attribute values for users at different
clearance levels.

We illustrate these concepts with the simple example of a multilevel relation shown
in Figure 24.2(a), where we display the classification attribute values next to each
attribute’s value. Assume that the Name attribute is the apparent key, and consider
the query SELECT * FROM EMPLOYEE. A user with security clearance S would see
the same relation shown in Figure 24.2(a), since all tuple classifications are less than
or equal to S. However, a user with security clearance C would not be allowed to see
the values for Salary of ‘Brown’ and Job_performance of ‘Smith’, since they have higher
classification. The tuples would be filtered to appear as shown in Figure 24.2(b),
with Salary and Job_performance appearing as null. For a user with security clearance
U, the filtering allows only the Name attribute of ‘Smith’ to appear, with all the other

Name Salary JobPerformance TC
Smith U C40000 SFair S
Smith U C40000 CExcellent C
Brown C S80000 CGood S

EMPLOYEE(d)

Name Salary JobPerformance TC
Smith U C40000 SFair S
Brown C S80000 CGood S

EMPLOYEE(a)

Name Salary JobPerformance TC

Smith U C40000 CNULL C
Brown C CNULL CGood C

EMPLOYEE(b)

Name Salary JobPerformance TC

Smith U UNULL UNULL U

EMPLOYEE(c)

Figure 24.2
A multilevel relation to illus-
trate multilevel security. (a)
The original EMPLOYEE
tuples. (b) Appearance of
EMPLOYEE after filtering
for classification C users.
(c) Appearance of
EMPLOYEE after filtering
for classification U users.
(d) Polyinstantiation of the
Smith tuple.

4This is similar to the notion of having multiple versions in the database that represent the same real-
world object.



850 Chapter 24 Database Security

attributes appearing as null (Figure 24.2(c)). Thus, filtering introduces null values
for attribute values whose security classification is higher than the user’s security
clearance.

In general, the entity integrity rule for multilevel relations states that all attributes
that are members of the apparent key must not be null and must have the same
security classification within each individual tuple. Additionally, all other attribute
values in the tuple must have a security classification greater than or equal to that of
the apparent key. This constraint ensures that a user can see the key if the user is
permitted to see any part of the tuple. Other integrity rules, called null integrity
and interinstance integrity, informally ensure that if a tuple value at some security
level can be filtered (derived) from a higher-classified tuple, then it is sufficient to
store the higher-classified tuple in the multilevel relation.

To illustrate polyinstantiation further, suppose that a user with security clearance C
tries to update the value of Job_performance of ‘Smith’ in Figure 24.2 to ‘Excellent’;
this corresponds to the following SQL update being submitted by that user:

UPDATE EMPLOYEE
SET Job_performance = ‘Excellent’
WHERE Name = ‘Smith’;

Since the view provided to users with security clearance C (see Figure 24.2(b)) per-
mits such an update, the system should not reject it; otherwise, the user could infer
that some nonnull value exists for the Job_performance attribute of ‘Smith’ rather
than the null value that appears. This is an example of inferring information
through what is known as a covert channel, which should not be permitted in
highly secure systems (see Section 24.6.1). However, the user should not be allowed
to overwrite the existing value of Job_performance at the higher classification level.
The solution is to create a polyinstantiation for the ‘Smith’ tuple at the lower classi-
fication level C, as shown in Figure 24.2(d). This is necessary since the new tuple
cannot be filtered from the existing tuple at classification S.

The basic update operations of the relational model (INSERT, DELETE, UPDATE)
must be modified to handle this and similar situations, but this aspect of the prob-
lem is outside the scope of our presentation. We refer the interested reader to the
Selected Bibliography at the end of this chapter for further details.

24.3.1 Comparing Discretionary Access Control 
and Mandatory Access Control

Discretionary access control (DAC) policies are characterized by a high degree of
flexibility, which makes them suitable for a large variety of application domains.
The main drawback of DAC models is their vulnerability to malicious attacks, such
as Trojan horses embedded in application programs. The reason is that discre-
tionary authorization models do not impose any control on how information is
propagated and used once it has been accessed by users authorized to do so. By con-
trast, mandatory policies ensure a high degree of protection—in a way, they prevent
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any illegal flow of information. Therefore, they are suitable for military and high
security types of applications, which require a higher degree of protection.
However, mandatory policies have the drawback of being too rigid in that they
require a strict classification of subjects and objects into security levels, and there-
fore they are applicable to few environments. In many practical situations, discre-
tionary policies are preferred because they offer a better tradeoff between security
and applicability.

24.3.2 Role-Based Access Control
Role-based access control (RBAC) emerged rapidly in the 1990s as a proven tech-
nology for managing and enforcing security in large-scale enterprise-wide systems.
Its basic notion is that privileges and other permissions are associated with organi-
zational roles, rather than individual users. Individual users are then assigned to
appropriate roles. Roles can be created using the CREATE ROLE and DESTROY
ROLE commands. The GRANT and REVOKE commands discussed in Section 24.2
can then be used to assign and revoke privileges from roles, as well as for individual
users when needed. For example, a company may have roles such as sales account
manager, purchasing agent, mailroom clerk, department manager, and so on.
Multiple individuals can be assigned to each role. Security privileges that are com-
mon to a role are granted to the role name, and any individual assigned to this role
would automatically have those privileges granted.

RBAC can be used with traditional discretionary and mandatory access controls; it
ensures that only authorized users in their specified roles are given access to certain
data or resources. Users create sessions during which they may activate a subset of
roles to which they belong. Each session can be assigned to several roles, but it maps
to one user or a single subject only. Many DBMSs have allowed the concept of roles,
where privileges can be assigned to roles.

Separation of duties is another important requirement in various commercial
DBMSs. It is needed to prevent one user from doing work that requires the involve-
ment of two or more people, thus preventing collusion. One method in which sepa-
ration of duties can be successfully implemented is with mutual exclusion of roles.
Two roles are said to be mutually exclusive if both the roles cannot be used simul-
taneously by the user. Mutual exclusion of roles can be categorized into two types,
namely authorization time exclusion (static) and runtime exclusion (dynamic). In
authorization time exclusion, two roles that have been specified as mutually exclu-
sive cannot be part of a user’s authorization at the same time. In runtime exclusion,
both these roles can be authorized to one user but cannot be activated by the user at
the same time. Another variation in mutual exclusion of roles is that of complete
and partial exclusion.

The role hierarchy in RBAC is a natural way to organize roles to reflect the organi-
zation’s lines of authority and responsibility. By convention, junior roles at the 
bottom are connected to progressively senior roles as one moves up the hierarchy.
The hierarchic diagrams are partial orders, so they are reflexive, transitive, and 
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antisymmetric. In other words, if a user has one role, the user automatically has
roles lower in the hierarchy. Defining a role hierarchy involves choosing the type of
hierarchy and the roles, and then implementing the hierarchy by granting roles to
other roles. Role hierarchy can be implemented in the following manner:

GRANT ROLE full_time TO employee_type1
GRANT ROLE intern TO employee_type2

The above are examples of granting the roles full_time and intern to two types of
employees.

Another issue related to security is identity management. Identity refers to a unique
name of an individual person. Since the legal names of persons are not necessarily
unique, the identity of a person must include sufficient additional information to
make the complete name unique. Authorizing this identity and managing the
schema of these identities is called Identity Management. Identity Management
addresses how organizations can effectively authenticate people and manage their
access to confidential information. It has become more visible as a business require-
ment across all industries affecting organizations of all sizes. Identity Management
administrators constantly need to satisfy application owners while keeping expendi-
tures under control and increasing IT efficiency.

Another important consideration in RBAC systems is the possible temporal con-
straints that may exist on roles, such as the time and duration of role activations,
and timed triggering of a role by an activation of another role. Using an RBAC
model is a highly desirable goal for addressing the key security requirements of
Web-based applications. Roles can be assigned to workflow tasks so that a user with
any of the roles related to a task may be authorized to execute it and may play a cer-
tain role only for a certain duration.

RBAC models have several desirable features, such as flexibility, policy neutrality,
better support for security management and administration, and other aspects that
make them attractive candidates for developing secure Web-based applications.
These features are lacking in DAC and MAC models. In addition, RBAC models
include the capabilities available in traditional DAC and MAC policies.
Furthermore, an RBAC model provides mechanisms for addressing the security
issues related to the execution of tasks and workflows, and for specifying user-
defined and organization-specific policies. Easier deployment over the Internet has
been another reason for the success of RBAC models.

24.3.3 Label-Based Security and Row-Level Access Control
Many commercial DBMSs currently use the concept of row-level access control,
where sophisticated access control rules can be implemented by considering the
data row by row. In row-level access control, each data row is given a label, which is
used to store information about data sensitivity. Row-level access control provides
finer granularity of data security by allowing the permissions to be set for each row
and not just for the table or column. Initially the user is given a default session label
by the database administrator. Levels correspond to a hierarchy of data-sensitivity
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levels to exposure or corruption, with the goal of maintaining privacy or security.
Labels are used to prevent unauthorized users from viewing or altering certain data.
A user having a low authorization level, usually represented by a low number, is
denied access to data having a higher-level number. If no such label is given to a row,
a row label is automatically assigned to it depending upon the user’s session label.

A policy defined by an administrator is called a Label Security policy. Whenever
data affected by the policy is accessed or queried through an application, the policy
is automatically invoked. When a policy is implemented, a new column is added to
each row in the schema. The added column contains the label for each row that
reflects the sensitivity of the row as per the policy. Similar to MAC, where each user
has a security clearance, each user has an identity in label-based security. This user’s
identity is compared to the label assigned to each row to determine whether the user
has access to view the contents of that row. However, the user can write the label
value himself, within certain restrictions and guidelines for that specific row. This
label can be set to a value that is between the user’s current session label and the
user’s minimum level. The DBA has the privilege to set an initial default row label.

The Label Security requirements are applied on top of the DAC requirements for
each user. Hence, the user must satisfy the DAC requirements and then the label
security requirements to access a row. The DAC requirements make sure that the
user is legally authorized to carry on that operation on the schema. In most applica-
tions, only some of the tables need label-based security. For the majority of the
application tables, the protection provided by DAC is sufficient.

Security policies are generally created by managers and human resources personnel.
The policies are high-level, technology neutral, and relate to risks. Policies are a
result of management instructions to specify organizational procedures, guiding
principles, and courses of action that are considered to be expedient, prudent, or
advantageous. Policies are typically accompanied by a definition of penalties and
countermeasures if the policy is transgressed. These policies are then interpreted
and converted to a set of label-oriented policies by the Label Security administra-
tor, who defines the security labels for data and authorizations for users; these labels
and authorizations govern access to specified protected objects.

Suppose a user has SELECT privileges on a table. When the user executes a SELECT
statement on that table, Label Security will automatically evaluate each row
returned by the query to determine whether the user has rights to view the data. For
example, if the user has a sensitivity of 20, then the user can view all rows having a
security level of 20 or lower. The level determines the sensitivity of the information
contained in a row; the more sensitive the row, the higher its security label value.
Such Label Security can be configured to perform security checks on UPDATE,
DELETE, and INSERT statements as well.

24.3.4 XML Access Control
With the worldwide use of XML in commercial and scientific applications, efforts
are under way to develop security standards. Among these efforts are digital 
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signatures and encryption standards for XML. The XML Signature Syntax and
Processing specification describes an XML syntax for representing the associations
between cryptographic signatures and XML documents or other electronic
resources. The specification also includes procedures for computing and verifying
XML signatures. An XML digital signature differs from other protocols for message
signing, such as PGP (Pretty Good Privacy—a confidentiality and authentication
service that can be used for electronic mail and file storage application), in its sup-
port for signing only specific portions of the XML tree (see Chapter 12) rather than
the complete document. Additionally, the XML signature specification defines
mechanisms for countersigning and transformations—so-called canonicalization to
ensure that two instances of the same text produce the same digest for signing even
if their representations differ slightly, for example, in typographic white space.

The XML Encryption Syntax and Processing specification defines XML vocabulary
and processing rules for protecting confidentiality of XML documents in whole or
in part and of non-XML data as well. The encrypted content and additional pro-
cessing information for the recipient are represented in well-formed XML so that
the result can be further processed using XML tools. In contrast to other commonly
used technologies for confidentiality such as SSL (Secure Sockets Layer—a leading
Internet security protocol), and virtual private networks, XML encryption also
applies to parts of documents and to documents in persistent storage.

24.3.5 Access Control Policies for E-Commerce and the Web
Electronic commerce (e-commerce) environments are characterized by any trans-
actions that are done electronically. They require elaborate access control policies
that go beyond traditional DBMSs. In conventional database environments, access
control is usually performed using a set of authorizations stated by security officers
or users according to some security policies. Such a simple paradigm is not 
well suited for a dynamic environment like e-commerce. Furthermore, in an 
e-commerce environment the resources to be protected are not only traditional data
but also knowledge and experience. Such peculiarities call for more flexibility in
specifying access control policies. The access control mechanism must be flexible
enough to support a wide spectrum of heterogeneous protection objects.

A second related requirement is the support for content-based access control.
Content-based access control allows one to express access control policies that take
the protection object content into account. In order to support content-based access
control, access control policies must allow inclusion of conditions based on the
object content.

A third requirement is related to the heterogeneity of subjects, which requires access
control policies based on user characteristics and qualifications rather than on spe-
cific and individual characteristics (for example, user IDs). A possible solution, to
better take into account user profiles in the formulation of access control policies, is
to support the notion of credentials. A credential is a set of properties concerning a
user that are relevant for security purposes (for example, age or position or role
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within an organization). For instance, by using credentials, one can simply formu-
late policies such as Only permanent staff with five or more years of service can access
documents related to the internals of the system.

It is believed that the XML is expected to play a key role in access control for 
e-commerce applications5 because XML is becoming the common representation
language for document interchange over the Web, and is also becoming the lan-
guage for e-commerce. Thus, on the one hand there is the need to make XML repre-
sentations secure, by providing access control mechanisms specifically tailored to
the protection of XML documents. On the other hand, access control information
(that is, access control policies and user credentials) can be expressed using XML
itself. The Directory Services Markup Language (DSML) is a representation of
directory service information in XML syntax. It provides a foundation for a stan-
dard for communicating with the directory services that will be responsible for pro-
viding and authenticating user credentials. The uniform presentation of both
protection objects and access control policies can be applied to policies and creden-
tials themselves. For instance, some credential properties (such as the user name)
may be accessible to everyone, whereas other properties may be visible only to a
restricted class of users. Additionally, the use of an XML-based language for specify-
ing credentials and access control policies facilitates secure credential submission
and export of access control policies.

24.4 SQL Injection
SQL Injection is one of the most common threats to a database system. We will dis-
cuss it in detail later in this section. Some of the other attacks on databases that are
quite frequent are:

■ Unauthorized privilege escalation. This attack is characterized by an indi-
vidual attempting to elevate his or her privilege by attacking vulnerable
points in the database systems.

■ Privilege abuse. While the previous attack is done by an unauthorized user,
this attack is performed by a privileged user. For example, an administrator
who is allowed to change student information can use this privilege to
update student grades without the instructor’s permission.

■ Denial of service. A Denial of Service (DOS) attack is an attempt to make
resources unavailable to its intended users. It is a general attack category in
which access to network applications or data is denied to intended users by
overflowing the buffer or consuming resources.

■ Weak Authentication. If the user authentication scheme is weak, an attacker
can impersonate the identity of a legitimate user by obtaining their login
credentials.

5See Thuraisingham et al. (2001).
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24.4.1 SQL Injection Methods
As we discussed in Chapter 14, Web programs and applications that access a data-
base can send commands and data to the database, as well as display data retrieved
from the database through the Web browser. In an SQL Injection attack, the
attacker injects a string input through the application, which changes or manipu-
lates the SQL statement to the attacker’s advantage. An SQL Injection attack can
harm the database in various ways, such as unauthorized manipulation of the data-
base, or retrieval of sensitive data. It can also be used to execute system level com-
mands that may cause the system to deny service to the application. This section
describes types of injection attacks.

SQL Manipulation. A manipulation attack, which is the most common type of
injection attack, changes an SQL command in the application—for example, by
adding conditions to the WHERE-clause of a query, or by expanding a query with
additional query components using set operations such as UNION, INTERSECT, or
MINUS. Other types of manipulation attacks are also possible. A typical manipula-
tion attack occurs during database login. For example, suppose that a simplistic
authentication procedure issues the following query and checks to see if any rows
were returned:

SELECT * FROM users WHERE username = ‘jake’ and PASSWORD =
‘jakespasswd’.

The attacker can try to change (or manipulate) the SQL statement, by changing it as
follows:

SELECT * FROM users WHERE username = ‘jake’ and (PASSWORD =
‘jakespasswd’ or ‘x’ = ‘x’)

As a result, the attacker who knows that ‘jake’ is a valid login of some user is able to
log into the database system as ‘jake’ without knowing his password and is able to do
everything that ‘jake’ may be authorized to do to the database system.

Code Injection. This type of attack attempts to add additional SQL statements or
commands to the existing SQL statement by exploiting a computer bug, which is
caused by processing invalid data. The attacker can inject or introduce code into a
computer program to change the course of execution. Code injection is a popular
technique for system hacking or cracking to gain information.

Function Call Injection. In this kind of attack, a database function or operating
system function call is inserted into a vulnerable SQL statement to manipulate the
data or make a privileged system call. For example, it is possible to exploit a function
that performs some aspect related to network communication. In addition, func-
tions that are contained in a customized database package, or any custom database
function, can be executed as part of an SQL query. In particular, dynamically cre-
ated SQL queries (see Chapter 13) can be exploited since they are constructed at run
time.
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For example, the dual table is used in the FROM clause of SQL in Oracle when a user
needs to run SQL that does not logically have a table name. To get today’s date, we
can use:

SELECT SYSDATE FROM dual;

The following example demonstrates that even the simplest SQL statements can be
vulnerable.

SELECT TRANSLATE (‘user input’, ‘from_string’, ‘to_string’) FROM dual;

Here, TRANSLATE is used to replace a string of characters with another string of
characters. The TRANSLATE function above will replace the characters of the
‘from_string’ with the characters in the ‘to_string’ one by one. This means that the f
will be replaced with the t, the r with the o, the o with the _, and so on.

This type of SQL statement can be subjected to a function injection attack. Consider
the following example:

SELECT TRANSLATE (“ || UTL_HTTP.REQUEST (‘http://129.107.2.1/’) || ’’,
‘98765432’, ‘9876’) FROM dual;

The user can input the string (“ || UTL_HTTP.REQUEST (‘http://129.107.2.1/’) 
|| ’’), where || is the concatenate operator, thus requesting a page from a Web server.
UTL_HTTP makes Hypertext Transfer Protocol (HTTP) callouts from SQL. The
REQUEST object takes a URL (‘http://129.107.2.1/’ in this example) as a parameter,
contacts that site, and returns the data (typically HTML) obtained from that site.
The attacker could manipulate the string he inputs, as well as the URL, to include
other functions and do other illegal operations. We just used a dummy example to
show conversion of ‘98765432’ to ‘9876’, but the user’s intent would be to access the
URL and get sensitive information. The attacker can then retrieve useful informa-
tion from the database server—located at the URL that is passed as a parameter—
and send it to the Web server (that calls the TRANSLATE function).

24.4.2 Risks Associated with SQL Injection
SQL injection is harmful and the risks associated with it provide motivation for
attackers. Some of the risks associated with SQL injection attacks are explained
below.

■ Database Fingerprinting. The attacker can determine the type of database
being used in the backend so that he can use database-specific attacks that
correspond to weaknesses in a particular DBMS.

■ Denial of Service. The attacker can flood the server with requests, thus
denying service to valid users, or they can delete some data.

■ Bypassing Authentication. This is one of the most common risks, in which
the attacker can gain access to the database as an authorized user and per-
form all the desired tasks.
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■ Identifying Injectable Parameters. In this type of attack, the attacker gath-
ers important information about the type and structure of the back-end
database of a Web application. This attack is made possible by the fact 
that the default error page returned by application servers is often overly
descriptive.

■ Executing Remote Commands. This provides attackers with a tool to exe-
cute arbitrary commands on the database. For example, a remote user can
execute stored database procedures and functions from a remote SQL inter-
active interface.

■ Performing Privilege Escalation. This type of attack takes advantage of log-
ical flaws within the database to upgrade the access level.

24.4.3 Protection Techniques against SQL Injection
Protection against SQL injection attacks can be achieved by applying certain pro-
gramming rules to all Web-accessible procedures and functions. This section
describes some of these techniques.

Bind Variables (Using Parameterized Statements). The use of bind variables
(also known as parameters; see Chapter 13) protects against injection attacks and
also improves performance.

Consider the following example using Java and JDBC:

PreparedStatement stmt = conn.prepareStatement( “SELECT * FROM
EMPLOYEE WHERE EMPLOYEE_ID=? AND PASSWORD=?”);

stmt.setString(1, employee_id);

stmt.setString(2, password);

Instead of embedding the user input into the statement, the input should be bound
to a parameter. In this example, the input ‘1’ is assigned (bound) to a bind variable
‘employee_id’ and input ‘2’ to the bind variable ‘password’ instead of directly pass-
ing string parameters.

Filtering Input (Input Validation). This technique can be used to remove escape
characters from input strings by using the SQL Replace function. For example, the
delimiter single quote (‘) can be replaced by two single quotes (‘’). Some SQL
Manipulation attacks can be prevented by using this technique, since escape charac-
ters can be used to inject manipulation attacks. However, because there can be a
large number of escape characters, this technique is not reliable.

Function Security. Database functions, both standard and custom, should be
restricted, as they can be exploited in the SQL function injection attacks.
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24.5 Introduction to Statistical Database
Security

Statistical databases are used mainly to produce statistics about various popula-
tions. The database may contain confidential data about individuals, which should
be protected from user access. However, users are permitted to retrieve statistical
information about the populations, such as averages, sums, counts, maximums,
minimums, and standard deviations. The techniques that have been developed to
protect the privacy of individual information are beyond the scope of this book. We
will illustrate the problem with a very simple example, which refers to the relation
shown in Figure 24.3. This is a PERSON relation with the attributes Name, Ssn,
Income, Address, City, State, Zip, Sex, and Last_degree.

A population is a set of tuples of a relation (table) that satisfy some selection condi-
tion. Hence, each selection condition on the PERSON relation will specify a partic-
ular population of PERSON tuples. For example, the condition Sex = ‘M’ specifies
the male population; the condition ((Sex = ‘F’) AND (Last_degree = ‘M.S.’ OR
Last_degree = ‘Ph.D.’)) specifies the female population that has an M.S. or Ph.D.
degree as their highest degree; and the condition City = ‘Houston’ specifies the pop-
ulation that lives in Houston.

Statistical queries involve applying statistical functions to a population of tuples.
For example, we may want to retrieve the number of individuals in a population or
the average income in the population. However, statistical users are not allowed to
retrieve individual data, such as the income of a specific person. Statistical database
security techniques must prohibit the retrieval of individual data. This can be
achieved by prohibiting queries that retrieve attribute values and by allowing only
queries that involve statistical aggregate functions such as COUNT, SUM, MIN, MAX,
AVERAGE, and STANDARD DEVIATION. Such queries are sometimes called statistical
queries.

It is the responsibility of a database management system to ensure the confidential-
ity of information about individuals, while still providing useful statistical sum-
maries of data about those individuals to users. Provision of privacy protection of
users in a statistical database is paramount; its violation is illustrated in the follow-
ing example.

In some cases it is possible to infer the values of individual tuples from a sequence
of statistical queries. This is particularly true when the conditions result in a 

Name Ssn Income Address City State Zip Sex Last_degree

PERSON Figure 24.3
The PERSON relation
schema for illustrating
statistical database
security.
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population consisting of a small number of tuples. As an illustration, consider the
following statistical queries:

Q1: SELECT COUNT (*) FROM PERSON
WHERE <condition>;

Q2: SELECT AVG (Income) FROM PERSON
WHERE <condition>;

Now suppose that we are interested in finding the Salary of Jane Smith, and we know
that she has a Ph.D. degree and that she lives in the city of Bellaire, Texas. We issue
the statistical query Q1 with the following condition:

(Last_degree=‘Ph.D.’ AND Sex=‘F’ AND City=‘Bellaire’ AND State=‘Texas’)

If we get a result of 1 for this query, we can issue Q2 with the same condition and
find the Salary of Jane Smith. Even if the result of Q1 on the preceding condition is
not 1 but is a small number—say 2 or 3—we can issue statistical queries using the
functions MAX, MIN, and AVERAGE to identify the possible range of values for the
Salary of Jane Smith.

The possibility of inferring individual information from statistical queries is
reduced if no statistical queries are permitted whenever the number of tuples in the
population specified by the selection condition falls below some threshold. Another
technique for prohibiting retrieval of individual information is to prohibit
sequences of queries that refer repeatedly to the same population of tuples. It is also
possible to introduce slight inaccuracies or noise into the results of statistical queries
deliberately, to make it difficult to deduce individual information from the results.
Another technique is partitioning of the database. Partitioning implies that records
are stored in groups of some minimum size; queries can refer to any complete group
or set of groups, but never to subsets of records within a group. The interested
reader is referred to the bibliography at the end of this chapter for a discussion of
these techniques.

24.6 Introduction to Flow Control
Flow control regulates the distribution or flow of information among accessible
objects. A flow between object X and object Y occurs when a program reads values
from X and writes values into Y. Flow controls check that information contained in
some objects does not flow explicitly or implicitly into less protected objects. Thus, a
user cannot get indirectly in Y what he or she cannot get directly in X. Active flow
control began in the early 1970s. Most flow controls employ some concept of security
class; the transfer of information from a sender to a receiver is allowed only if the
receiver’s security class is at least as privileged as the sender’s. Examples of a flow con-
trol include preventing a service program from leaking a customer’s confidential
data, and blocking the transmission of secret military data to an unknown classified
user.

A flow policy specifies the channels along which information is allowed to move.
The simplest flow policy specifies just two classes of information—confidential (C)
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and nonconfidential (N)—and allows all flows except those from class C to class N.
This policy can solve the confinement problem that arises when a service program
handles data such as customer information, some of which may be confidential.
For example, an income-tax computing service might be allowed to retain a cus-
tomer’s address and the bill for services rendered, but not a customer’s income or
deductions.

Access control mechanisms are responsible for checking users’ authorizations for
resource access: Only granted operations are executed. Flow controls can be
enforced by an extended access control mechanism, which involves assigning a secu-
rity class (usually called the clearance) to each running program. The program is
allowed to read a particular memory segment only if its security class is as high as
that of the segment. It is allowed to write in a segment only if its class is as low as
that of the segment. This automatically ensures that no information transmitted by
the person can move from a higher to a lower class. For example, a military program
with a secret clearance can only read from objects that are unclassified and confi-
dential and can only write into objects that are secret or top secret.

Two types of flow can be distinguished: explicit flows, occurring as a consequence of
assignment instructions, such as Y:= f(X1,Xn,), and implicit flows generated by con-
ditional instructions, such as if f(Xm+1, ..., Xn) then Y:= f (X1,Xm).

Flow control mechanisms must verify that only authorized flows, both explicit and
implicit, are executed. A set of rules must be satisfied to ensure secure information
flows. Rules can be expressed using flow relations among classes and assigned to
information, stating the authorized flows within a system. (An information flow
from A to B occurs when information associated with A affects the value of infor-
mation associated with B. The flow results from operations that cause information
transfer from one object to another.) These relations can define, for a class, the set of
classes where information (classified in that class) can flow, or can state the specific
relations to be verified between two classes to allow information to flow from one to
the other. In general, flow control mechanisms implement the controls by assigning
a label to each object and by specifying the security class of the object. Labels are
then used to verify the flow relations defined in the model.

24.6.1 Covert Channels
A covert channel allows a transfer of information that violates the security or the
policy. Specifically, a covert channel allows information to pass from a higher clas-
sification level to a lower classification level through improper means. Covert chan-
nels can be classified into two broad categories: timing channels and storage. The
distinguishing feature between the two is that in a timing channel the information
is conveyed by the timing of events or processes, whereas storage channels do not
require any temporal synchronization, in that information is conveyed by accessing
system information or what is otherwise inaccessible to the user.

In a simple example of a covert channel, consider a distributed database system in
which two nodes have user security levels of secret (S) and unclassified (U). In order
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for a transaction to commit, both nodes must agree to commit. They mutually can
only do operations that are consistent with the *-property, which states that in any
transaction, the S site cannot write or pass information to the U site. However, if
these two sites collude to set up a covert channel between them, a transaction
involving secret data may be committed unconditionally by the U site, but the S site
may do so in some predefined agreed-upon way so that certain information may be
passed from the S site to the U site, violating the *-property. This may be achieved
where the transaction runs repeatedly, but the actions taken by the S site implicitly
convey information to the U site. Measures such as locking, which we discussed in
Chapters 22 and 23, prevent concurrent writing of the information by users with
different security levels into the same objects, preventing the storage-type covert
channels. Operating systems and distributed databases provide control over the
multiprogramming of operations that allows a sharing of resources without the
possibility of encroachment of one program or process into another’s memory or
other resources in the system, thus preventing timing-oriented covert channels. In
general, covert channels are not a major problem in well-implemented robust data-
base implementations. However, certain schemes may be contrived by clever users
that implicitly transfer information.

Some security experts believe that one way to avoid covert channels is to disallow
programmers to actually gain access to sensitive data that a program will process
after the program has been put into operation. For example, a programmer for a
bank has no need to access the names or balances in depositors’ accounts.
Programmers for brokerage firms do not need to know what buy and sell orders
exist for clients. During program testing, access to a form of real data or some sam-
ple test data may be justifiable, but not after the program has been accepted for reg-
ular use.

24.7 Encryption and Public 
Key Infrastructures

The previous methods of access and flow control, despite being strong control
measures, may not be able to protect databases from some threats. Suppose we com-
municate data, but our data falls into the hands of a nonlegitimate user. In this situ-
ation, by using encryption we can disguise the message so that even if the
transmission is diverted, the message will not be revealed. Encryption is the conver-
sion of data into a form, called a ciphertext, which cannot be easily understood by
unauthorized persons. It enhances security and privacy when access controls are
bypassed, because in cases of data loss or theft, encrypted data cannot be easily
understood by unauthorized persons.

With this background, we adhere to following standard definitions:6

■ Ciphertext: Encrypted (enciphered) data.

6These definitions are from NIST (National Institute of Standards and Technology) from http://csrc.nist
.gov/publications/nistpubs/800-67/SP800-67.pdf.

http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf
http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf
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■ Plaintext (or cleartext): Intelligible data that has meaning and can be read or
acted upon without the application of decryption.

■ Encryption: The process of transforming plaintext into ciphertext.

■ Decryption: The process of transforming ciphertext back into plaintext.

Encryption consists of applying an encryption algorithm to data using some pre-
specified encryption key. The resulting data has to be decrypted using a
decryption key to recover the original data.

24.7.1 The Data Encryption and Advanced 
Encryption Standards

The Data Encryption Standard (DES) is a system developed by the U.S. govern-
ment for use by the general public. It has been widely accepted as a cryptographic
standard both in the United States and abroad. DES can provide end-to-end
encryption on the channel between sender A and receiver B. The DES algorithm is a
careful and complex combination of two of the fundamental building blocks of
encryption: substitution and permutation (transposition). The algorithm derives its
strength from repeated application of these two techniques for a total of 16 cycles.
Plaintext (the original form of the message) is encrypted as blocks of 64 bits.
Although the key is 64 bits long, in effect the key can be any 56-bit number. After
questioning the adequacy of DES, the NIST introduced the Advanced Encryption
Standard (AES). This algorithm has a block size of 128 bits, compared with DES’s
56-block size, and can use keys of 128, 192, or 256 bits, compared with DES’s 56-bit
key. AES introduces more possible keys, compared with DES, and thus takes a much
longer time to crack.

24.7.2 Symmetric Key Algorithms
A symmetric key is one key that is used for both encryption and decryption. By
using a symmetric key, fast encryption and decryption is possible for routine use
with sensitive data in the database. A message encrypted with a secret key can be
decrypted only with the same secret key. Algorithms used for symmetric 
key encryption are called secret-key algorithms. Since secret-key algorithms are
mostly used for encrypting the content of a message, they are also called content-
encryption algorithms.

The major liability associated with secret-key algorithms is the need for sharing the
secret key. A possible method is to derive the secret key from a user-supplied password
string by applying the same function to the string at both the sender and receiver; this
is known as a password-based encryption algorithm. The strength of the symmetric key
encryption depends on the size of the key used. For the same algorithm, encrypting
using a longer key is tougher to break than the one using a shorter key.

24.7.3 Public (Asymmetric) Key Encryption 
In 1976, Diffie and Hellman proposed a new kind of cryptosystem, which they
called public key encryption. Public key algorithms are based on mathematical
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functions rather than operations on bit patterns. They address one drawback of
symmetric key encryption, namely that both sender and recipient must exchange
the common key in a secure manner. In public key systems, two keys are used for
encryption/decryption. The public key can be transmitted in a non-secure way,
whereas the private key is not transmitted at all. These algorithms—which use two
related keys, a public key and a private key, to perform complementary operations
(encryption and decryption)—are known as asymmetric key encryption algo-
rithms. The use of two keys can have profound consequences in the areas of confi-
dentiality, key distribution, and authentication. The two keys used for public key
encryption are referred to as the public key and the private key. The private key is
kept secret, but it is referred to as a private key rather than a secret key (the key used
in conventional encryption) to avoid confusion with conventional encryption. The
two keys are mathematically related, since one of the keys is used to perform
encryption and the other to perform decryption. However, it is very difficult to
derive the private key from the public key.

A public key encryption scheme, or infrastructure, has six ingredients:

1. Plaintext. This is the data or readable message that is fed into the algorithm
as input.

2. Encryption algorithm. This algorithm performs various transformations
on the plaintext.

3. and 4. Public and private keys. These are a pair of keys that have been
selected so that if one is used for encryption, the other is used for decryp-
tion. The exact transformations performed by the encryption algorithm
depend on the public or private key that is provided as input. For example, if
a message is encrypted using the public key, it can only be decrypted using
the private key.

5. Ciphertext. This is the scrambled message produced as output. It depends
on the plaintext and the key. For a given message, two different keys will pro-
duce two different ciphertexts.

6. Decryption algorithm. This algorithm accepts the ciphertext and the
matching key and produces the original plaintext.

As the name suggests, the public key of the pair is made public for others to use,
whereas the private key is known only to its owner. A general-purpose public key
cryptographic algorithm relies on one key for encryption and a different but related
key for decryption. The essential steps are as follows:

1. Each user generates a pair of keys to be used for the encryption and decryp-
tion of messages.

2. Each user places one of the two keys in a public register or other accessible
file. This is the public key. The companion key is kept private.

3. If a sender wishes to send a private message to a receiver, the sender encrypts
the message using the receiver’s public key.
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4. When the receiver receives the message, he or she decrypts it using the
receiver’s private key. No other recipient can decrypt the message because
only the receiver knows his or her private key.

The RSA Public Key Encryption Algorithm. One of the first public key schemes
was introduced in 1978 by Ron Rivest, Adi Shamir, and Len Adleman at MIT and is
named after them as the RSA scheme. The RSA scheme has since then reigned
supreme as the most widely accepted and implemented approach to public key
encryption. The RSA encryption algorithm incorporates results from number the-
ory, combined with the difficulty of determining the prime factors of a target. The
RSA algorithm also operates with modular arithmetic—mod n.

Two keys, d and e, are used for decryption and encryption. An important property is
that they can be interchanged. n is chosen as a large integer that is a product of two
large distinct prime numbers, a and b, n = a × b. The encryption key e is a randomly
chosen number between 1 and n that is relatively prime to (a – 1) × (b – 1). The
plaintext block P is encrypted as Pe where Pe = P mod n. Because the exponentiation
is performed mod n, factoring Pe to uncover the encrypted plaintext is difficult.
However, the decrypting key d is carefully chosen so that (Pe)d mod n = P. The
decryption key d can be computed from the condition that d × e = 1 mod ((a – 1) ×
(b – 1)). Thus, the legitimate receiver who knows d simply computes (Pe)d mod n =
P and recovers P without having to factor Pe.

24.7.4 Digital Signatures
A digital signature is an example of using encryption techniques to provide authen-
tication services in electronic commerce applications. Like a handwritten signature,
a digital signature is a means of associating a mark unique to an individual with a
body of text. The mark should be unforgettable, meaning that others should be able
to check that the signature comes from the originator.

A digital signature consists of a string of symbols. If a person’s digital signature were
always the same for each message, then one could easily counterfeit it by simply
copying the string of symbols. Thus, signatures must be different for each use. This
can be achieved by making each digital signature a function of the message that it is
signing, together with a timestamp. To be unique to each signer and counterfeit-
proof, each digital signature must also depend on some secret number that is
unique to the signer. Thus, in general, a counterfeitproof digital signature must
depend on the message and a unique secret number of the signer. The verifier of the
signature, however, should not need to know any secret number. Public key tech-
niques are the best means of creating digital signatures with these properties.

24.7.5 Digital Certificates
A digital certificate is used to combine the value of a public key with the identity of
the person or service that holds the corresponding private key into a digitally signed
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statement. Certificates are issued and signed by a certification authority (CA). The
entity receiving this certificate from a CA is the subject of that certificate. Instead of
requiring each participant in an application to authenticate every user, third-party
authentication relies on the use of digital certificates.

The digital certificate itself contains various types of information. For example,
both the certification authority and the certificate owner information are included.
The following list describes all the information included in the certificate:

1. The certificate owner information, which is represented by a unique identi-
fier known as the distinguished name (DN) of the owner. This includes the
owner’s name, as well as the owner’s organization and other information
about the owner.

2. The certificate also includes the public key of the owner.

3. The date of issue of the certificate is also included.

4. The validity period is specified by ‘Valid From’ and ‘Valid To’ dates, which are
included in each certificate.

5. Issuer identifier information is included in the certificate.

6. Finally, the digital signature of the issuing CA for the certificate is included.
All the information listed is encoded through a message-digest function,
which creates the digital signature. The digital signature basically certifies
that the association between the certificate owner and public key is valid.

24.8 Privacy Issues and Preservation
Preserving data privacy is a growing challenge for database security and privacy
experts. In some perspectives, to preserve data privacy we should even limit per-
forming large-scale data mining and analysis. The most commonly used techniques
to address this concern are to avoid building mammoth central warehouses as a sin-
gle repository of vital information. Another possible measure is to intentionally
modify or perturb data.

If all data were available at a single warehouse, violating only a single repository’s
security could expose all data. Avoiding central warehouses and using distributed
data mining algorithms minimizes the exchange of data needed to develop globally
valid models. By modifying, perturbing, and anonymizing data, we can also miti-
gate privacy risks associated with data mining. This can be done by removing iden-
tity information from the released data and injecting noise into the data. However,
by using these techniques, we should pay attention to the quality of the resulting
data in the database, which may undergo too many modifications. We must be able
to estimate the errors that may be introduced by these modifications.

Privacy is an important area of ongoing research in database management. It is
complicated due to its multidisciplinary nature and the issues related to the subjec-
tivity in the interpretation of privacy, trust, and so on. As an example, consider
medical and legal records and transactions, which must maintain certain privacy
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requirements while they are being defined and enforced. Providing access control
and privacy for mobile devices is also receiving increased attention. DBMSs need
robust techniques for efficient storage of security-relevant information on small
devices, as well as trust negotiation techniques. Where to keep information related
to user identities, profiles, credentials, and permissions and how to use it for reliable
user identification remains an important problem. Because large-sized streams of
data are generated in such environments, efficient techniques for access control
must be devised and integrated with processing techniques for continuous queries.
Finally, the privacy of user location data, acquired from sensors and communica-
tion networks, must be ensured.

24.9 Challenges of Database Security
Considering the vast growth in volume and speed of threats to databases and infor-
mation assets, research efforts need to be devoted to the following issues: data qual-
ity, intellectual property rights, and database survivability. These are only some of
the main challenges that researchers in database security are trying to address.

24.9.1 Data Quality
The database community needs techniques and organizational solutions to assess
and attest the quality of data. These techniques may include simple mechanisms
such as quality stamps that are posted on Web sites. We also need techniques that
provide more effective integrity semantics verification and tools for the assessment
of data quality, based on techniques such as record linkage. Application-level recov-
ery techniques are also needed for automatically repairing incorrect data. The ETL
(extract, transform, load) tools widely used to load data in data warehouses (see
Section 29.4) are presently grappling with these issues.

24.9.2 Intellectual Property Rights
With the widespread use of the Internet and intranets, legal and informational
aspects of data are becoming major concerns of organizations. To address these
concerns, watermarking techniques for relational data have been proposed. The
main purpose of digital watermarking is to protect content from unauthorized
duplication and distribution by enabling provable ownership of the content. It has
traditionally relied upon the availability of a large noise domain within which the
object can be altered while retaining its essential properties. However, research is
needed to assess the robustness of such techniques and to investigate different
approaches aimed at preventing intellectual property rights violations.

24.9.3 Database Survivability
Database systems need to operate and continue their functions, even with reduced
capabilities, despite disruptive events such as information warfare attacks. A DBMS,
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in addition to making every effort to prevent an attack and detecting one in the
event of occurrence, should be able to do the following:

■ Confinement. Take immediate action to eliminate the attacker’s access to the
system and to isolate or contain the problem to prevent further spread.

■ Damage assessment. Determine the extent of the problem, including failed
functions and corrupted data.

■ Reconfiguration. Reconfigure to allow operation to continue in a degraded
mode while recovery proceeds.

■ Repair. Recover corrupted or lost data and repair or reinstall failed system
functions to reestablish a normal level of operation.

■ Fault treatment. To the extent possible, identify the weaknesses exploited in
the attack and take steps to prevent a recurrence.

The goal of the information warfare attacker is to damage the organization’s opera-
tion and fulfillment of its mission through disruption of its information systems.
The specific target of an attack may be the system itself or its data. While attacks that
bring the system down outright are severe and dramatic, they must also be well
timed to achieve the attacker’s goal, since attacks will receive immediate and con-
centrated attention in order to bring the system back to operational condition, diag-
nose how the attack took place, and install preventive measures.

To date, issues related to database survivability have not been sufficiently investi-
gated. Much more research needs to be devoted to techniques and methodologies
that ensure database system survivability.

24.10 Oracle Label-Based Security 
Restricting access to entire tables or isolating sensitive data into separate databases is
a costly operation to administer. Oracle Label Security overcomes the need for such
measures by enabling row-level access control. It is available in Oracle Database 11g
Release 1 (11.1) Enterprise Edition at the time of writing. Each database table or
view has a security policy associated with it. This policy executes every time the
table or view is queried or altered. Developers can readily add label-based access
control to their Oracle Database applications. Label-based security provides an
adaptable way of controlling access to sensitive data. Both users and data have labels
associated with them. Oracle Label Security uses these labels to provide security.

24.10.1 Virtual Private Database (VPD) Technology
Virtual Private Databases (VPDs) is a feature of the Oracle Enterprise Edition that
adds predicates to user statements to limit their access in a transparent manner to
the user and the application. The VPD concept allows server-enforced, fine-grained
access control for a secure application.

VPD provides access control based on policies. These VPD policies enforce object-
level access control or row-level security. It provides an application programming
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interface (API) that allows security policies to be attached to database tables or
views. Using PL/SQL, a host programming language used in Oracle applications,
developers and security administrators can implement security policies with the
help of stored procedures.7 VPD policies allow developers to remove access security
mechanisms from applications and centralize them within the Oracle Database.

VPD is enabled by associating a security “policy” with a table, view, or synonym. An
administrator uses the supplied PL/SQL package, DBMS_RLS, to bind a policy
function with a database object. When an object having a security policy associated
with it is accessed, the function implementing this policy is consulted. The policy
function returns a predicate (a WHERE clause) which is then appended to the user’s
SQL statement, thus transparently and dynamically modifying the user’s data access.
Oracle Label Security is a technique of enforcing row-level security in the form of a
security policy.

24.10.2 Label Security Architecture
Oracle Label Security is built on the VPD technology delivered in the Oracle
Database 11.1 Enterprise Edition. Figure 24.4 illustrates how data is accessed under
Oracle Label Security, showing the sequence of DAC and label security checks.

Figure 24.4 shows the sequence of discretionary access control (DAC) and label
security checks. The left part of the figure shows an application user in an Oracle
Database 11g Release 1 (11.1) session sending out an SQL request. The Oracle
DBMS checks the DAC privileges of the user, making sure that he or she has SELECT
privileges on the table. Then it checks whether the table has a Virtual Private
Database (VPD) policy associated with it to determine if the table is protected using
Oracle Label Security. If it is, the VPD SQL modification (WHERE clause) is added
to the original SQL statement to find the set of accessible rows for the user to view.
Then Oracle Label Security checks the labels on each row, to determine the subset of
rows to which the user has access (as explained in the next section). This modified
query gets processed, optimized, and executed.

24.10.3 How Data Labels and User Labels Work Together
A user’s label indicates the information the user is permitted to access. It also deter-
mines the type of access (read or write) that the user has on that information. A
row’s label shows the sensitivity of the information that the row contains as well as
the ownership of the information. When a table in the database has a label-based
access associated with it, a row can be accessed only if the user’s label meet certain
criteria defined in the policy definitions. Access is granted or denied based on the
result of comparing the data label and the session label of the user.

Compartments allow a finer classification of sensitivity of the labeled data. All data
related to the same project can be labeled with the same compartment.
Compartments are optional; a label can contain zero or more compartments.

7Stored procedures are discussed in Section 5.2.2.
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Groups are used to identify organizations as owners of the data with corresponding
group labels. Groups are hierarchical; for example, a group can be associated with a
parent group.

If a user has a maximum level of SENSITIVE, then the user potentially has access to
all data having levels SENSITIVE, CONFIDENTIAL, and UNCLASSIFIED. This user has
no access to HIGHLY_SENSITIVE data. Figure 24.5 shows how data labels and user
labels work together to provide access control in Oracle Label Security.

As shown in Figure 24.5, User 1 can access the rows 2, 3, and 4 because his maxi-
mum level is HS (Highly_Sensitive). He has access to the FIN (Finance) compart-
ment, and his access to group WR (Western Region) hierarchically includes group
WR_SAL (WR Sales). He cannot access row 1 because he does not have the CHEM
(Chemical) compartment. It is important that a user has authorization for all com-
partments in a row’s data label to be able to access that row. Based on this example,
user 2 can access both rows 3 and 4, and has a maximum level of S, which is less than
the HS in row 2. So, although user 2 has access to the FIN compartment, he can only
access the group WR_SAL, and thus cannot acces row 1.

24.11 Summary
In this chapter we discussed several techniques for enforcing database system secu-
rity. We presented different threats to databases in terms of loss of integrity, avail-
ability, and confidentiality. We discussed the types of control measures to deal with
these problems: access control, inference control, flow control, and encryption. In
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the introduction we covered various issues related to security including data sensi-
tivity and type of disclosures, providing security vs. precision in the result when a
user requests information, and the relationship between information security and
privacy.

Security enforcement deals with controlling access to the database system as a whole
and controlling authorization to access specific portions of a database. The former
is usually done by assigning accounts with passwords to users. The latter can be
accomplished by using a system of granting and revoking privileges to individual
accounts for accessing specific parts of the database. This approach is generally
referred to as discretionary access control (DAC). We presented some SQL com-
mands for granting and revoking privileges, and we illustrated their use with exam-
ples. Then we gave an overview of mandatory access control (MAC) mechanisms
that enforce multilevel security. These require the classifications of users and data
values into security classes and enforce the rules that prohibit flow of information
from higher to lower security levels. Some of the key concepts underlying the mul-
tilevel relational model, including filtering and polyinstantiation, were presented.
Role-based access control (RBAC) was introduced, which assigns privileges based
on roles that users play. We introduced the notion of role hierarchies, mutual exclu-
sion of roles, and row- and label-based security. We briefly discussed the problem of
controlling access to statistical databases to protect the privacy of individual infor-
mation while concurrently providing statistical access to populations of records. We
explained the main ideas behind the threat of SQL Injection, the methods in which
it can be induced, and the various types of risks associated with it. Then we gave an
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idea of the various ways SQL injection can be prevented. The issues related to flow
control and the problems associated with covert channels were discussed next, as
well as encryption and public-private key-based infrastructures. The idea of sym-
metric key algorithms and the use of the popular asymmetric key-based public key
infrastructure (PKI) scheme was explained. We also covered the concepts of digital
signatures and digital certificates. We highlighted the importance of privacy issues
and hinted at some privacy preservation techniques. We discussed a variety of chal-
lenges to security including data quality, intellectual property rights, and data sur-
vivability. We ended the chapter by introducing the implementation of security
policies by using a combination of label-based security and virtual private databases
in Oracle 11g.

Review Questions
24.1. Discuss what is meant by each of the following terms: database authoriza-

tion, access control, data encryption, privileged (system) account, database
audit, audit trail.

24.2. Which account is designated as the owner of a relation? What privileges does
the owner of a relation have?

24.3. How is the view mechanism used as an authorization mechanism?

24.4. Discuss the types of privileges at the account level and those at the relation
level.

24.5. What is meant by granting a privilege? What is meant by revoking a 
privilege?

24.6. Discuss the system of propagation of privileges and the restraints imposed
by horizontal and vertical propagation limits.

24.7. List the types of privileges available in SQL.

24.8. What is the difference between discretionary and mandatory access control?

24.9. What are the typical security classifications? Discuss the simple security
property and the *-property, and explain the justification behind these rules
for enforcing multilevel security.

24.10. Describe the multilevel relational data model. Define the following terms:
apparent key, polyinstantiation, filtering.

24.11. What are the relative merits of using DAC or MAC?

24.12. What is role-based access control? In what ways is it superior to DAC and
MAC?

24.13. What are the two types of mutual exclusion in role-based access control?

24.14. What is meant by row-level access control?

24.15. What is label security? How does an administrator enforce it?
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24.16. What are the different types of SQL injection attacks?

24.17. What risks are associated with SQL injection attacks?

24.18. What preventive measures are possible against SQL injection attacks?

24.19. What is a statistical database? Discuss the problem of statistical database
security.

24.20. How is privacy related to statistical database security? What measures can be
taken to ensure some degree of privacy in statistical databases?

24.21. What is flow control as a security measure? What types of flow control exist?

24.22. What are covert channels? Give an example of a covert channel.

24.23. What is the goal of encryption? What process is involved in encrypting data
and then recovering it at the other end?

24.24. Give an example of an encryption algorithm and explain how it works.

24.25. Repeat the previous question for the popular RSA algorithm.

24.26. What is a symmetric key algorithm for key-based security?

24.27. What is the public key infrastructure scheme? How does it provide security?

24.28. What are digital signatures? How do they work?

24.29. What type of information does a digital certificate include?

Exercises
24.30. How can privacy of data be preserved in a database?

24.31. What are some of the current outstanding challenges for database security?

24.32. Consider the relational database schema in Figure 3.5. Suppose that all the
relations were created by (and hence are owned by) user X, who wants to
grant the following privileges to user accounts A, B, C, D, and E:

a. Account A can retrieve or modify any relation except DEPENDENT and
can grant any of these privileges to other users.

b. Account B can retrieve all the attributes of EMPLOYEE and DEPARTMENT
except for Salary, Mgr_ssn, and Mgr_start_date.

c. Account C can retrieve or modify WORKS_ON but can only retrieve the
Fname, Minit, Lname, and Ssn attributes of EMPLOYEE and the Pname and
Pnumber attributes of PROJECT.

d. Account D can retrieve any attribute of EMPLOYEE or DEPENDENT and
can modify DEPENDENT.

e. Account E can retrieve any attribute of EMPLOYEE but only for
EMPLOYEE tuples that have Dno = 3.

f. Write SQL statements to grant these privileges. Use views where 
appropriate.
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24.33. Suppose that privilege (a) of Exercise 24.32 is to be given with GRANT
OPTION but only so that account A can grant it to at most five accounts, and
each of these accounts can propagate the privilege to other accounts but
without the GRANT OPTION privilege. What would the horizontal and verti-
cal propagation limits be in this case?

24.34. Consider the relation shown in Figure 24.2(d). How would it appear to a
user with classification U? Suppose that a classification U user tries to update
the salary of ‘Smith’ to $50,000; what would be the result of this action?
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by Lunt and Fernandez (1990), Jajodia and Sandhu (1991), Bertino (1998), Castano
et al. (1995), and Thuraisingham et al. (2001). The effects of multilevel security on
concurrency control are discussed in Atluri et al. (1997). Security in next-generation,
semantic, and object-oriented databases is discussed in Rabbiti et al. (1991), Jajodia
and Kogan (1990), and Smith (1990). Oh (1999) presents a model for both discre-
tionary and mandatory security. Security models for Web-based applications and
role-based access control are discussed in Joshi et al. (2001). Security issues for man-
agers in the context of e-commerce applications and the need for risk assessment
models for selection of appropriate security control measures are discussed in
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Farahmand et al. (2005). Row-level access control is explained in detail in Oracle
(2007b) and Sybase (2005). The latter also provides details on role hierarchy and
mutual exclusion. Oracle (2009) explains how Oracle uses the concept of identity
management.

Recent advances as well as future challenges for security and privacy of databases are
discussed in Bertino and Sandhu (2005). U.S. Govt. (1978), OECD (1980), and NRC
(2003) are good references on the view of privacy by important government bodies.
Karat et al. (2009) discusses a policy framework for security and privacy. XML and
access control are discussed in Naedele (2003). More details can be found on privacy
preserving techniques in Vaidya and Clifton (2004), intellectual property rights in
Sion et al. (2004), and database survivability in Jajodia et al. (1999). Oracle’s VPD
technology and label-based security is discussed in more detail in Oracle (2007b).
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Distributed Databases

In this chapter we turn our attention to distributed
databases (DDBs), distributed database management

systems (DDBMSs), and how the client-server architecture is used as a platform for
database application development. Distributed databases bring the advantages of
distributed computing to the database management domain. A distributed com-
puting system consists of a number of processing elements, not necessarily homo-
geneous, that are interconnected by a computer network, and that cooperate in
performing certain assigned tasks. As a general goal, distributed computing systems
partition a big, unmanageable problem into smaller pieces and solve it efficiently in
a coordinated manner. The economic viability of this approach stems from two rea-
sons: more computing power is harnessed to solve a complex task, and each
autonomous processing element can be managed independently to develop its own
applications.

DDB technology resulted from a merger of two technologies: database technology,
and network and data communication technology. Computer networks allow dis-
tributed processing of data. Traditional databases, on the other hand, focus on pro-
viding centralized, controlled access to data. Distributed databases allow an
integration of information and its processing by applications that may themselves
be centralized or distributed.

Several distributed database prototype systems were developed in the 1980s to
address the issues of data distribution, distributed query and transaction process-
ing, distributed database metadata management, and other topics. However, a full-
scale comprehensive DDBMS that implements the functionality and techniques
proposed in DDB research never emerged as a commercially viable product. Most
major vendors redirected their efforts from developing a pure DDBMS product into
developing systems based on client-server concepts, or toward developing technolo-
gies for accessing distributed heterogeneous data sources.

25chapter 25
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Organizations continue to be interested in the decentralization of processing (at the
system level) while achieving an integration of the information resources (at the log-
ical level) within their geographically distributed systems of databases, applications,
and users. There is now a general endorsement of the client-server approach to
application development, and the three-tier approach to Web applications develop-
ment (see Section 2.5).

In this chapter we discuss distributed databases, their architectural variations, and
concepts central to data distribution and the management of distributed data.
Details of the advances in communication technologies facilitating the develop-
ment of DDBs are outside the scope of this book; see the texts on data communica-
tions and networking listed in the Selected Bibliography at the end of this chapter.

Section 25.1 introduces distributed database management and related concepts.
Sections 25.2 and 25.3 introduce different types of distributed database systems and
their architectures, including federated and multidatabase systems. The problems of
heterogeneity and the needs of autonomy in federated database systems are also
highlighted. Detailed issues of distributed database design, involving fragmenting of
data and distributing it over multiple sites with possible replication, are discussed in
Section 25.4. Sections 25.5 and 25.6 introduce distributed database query and trans-
action processing techniques, respectively. Section 25.7 gives an overview of the
concurrency control and recovery in distributed databases. Section 25.8 discusses
catalog management schemes in distributed databases. In Section 25.9, we briefly
discuss current trends in distributed databases such as cloud computing and peer-
to-peer databases. Section 25.10 discusses distributed database features of the
Oracle RDBMS. Section 25.11 summarizes the chapter.

For a short introduction to the topic of distributed databases, Sections 25.1, 25.2,
and 25.3 may be covered.

25.1 Distributed Database Concepts1

We can define a distributed database (DDB) as a collection of multiple logically
interrelated databases distributed over a computer network, and a distributed data-
base management system (DDBMS) as a software system that manages a distrib-
uted database while making the distribution transparent to the user.2

Distributed databases are different from Internet Web files. Web pages are basically
a very large collection of files stored on different nodes in a network—the
Internet—with interrelationships among the files represented via hyperlinks. The
common functions of database management, including uniform query processing
and transaction processing, do not apply to this scenario yet. The technology is,
however, moving in a direction such that distributed World Wide Web (WWW)
databases will become a reality in the future. We have discussed some of the issues of

1The substantial contribution of Narasimhan Srinivasan to this and several other sections in this chapter
is appreciated.
2This definition and discussions in this section are based largely on Ozsu and Valduriez (1999).
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accessing databases on the Web in Chapters 12 and 14. The proliferation of data at
millions of Websites in various forms does not qualify as a DDB by the definition
given earlier.

25.1.1 Differences between DDB and Multiprocessor Systems
We need to distinguish distributed databases from multiprocessor systems that use
shared storage (primary memory or disk). For a database to be called distributed,
the following minimum conditions should be satisfied:

■ Connection of database nodes over a computer network. There are multi-
ple computers, called sites or nodes. These sites must be connected by an
underlying communication network to transmit data and commands
among sites, as shown later in Figure 25.3(c).

■ Logical interrelation of the connected databases. It is essential that the
information in the databases be logically related.

■ Absence of homogeneity constraint among connected nodes. It is not nec-
essary that all nodes be identical in terms of data, hardware, and software.

The sites may all be located in physical proximity—say, within the same building or
a group of adjacent buildings—and connected via a local area network, or they may
be geographically distributed over large distances and connected via a long-haul or
wide area network. Local area networks typically use wireless hubs or cables,
whereas long-haul networks use telephone lines or satellites. It is also possible to use
a combination of networks.

Networks may have different topologies that define the direct communication
paths among sites. The type and topology of the network used may have a signifi-
cant impact on the performance and hence on the strategies for distributed query
processing and distributed database design. For high-level architectural issues, how-
ever, it does not matter what type of network is used; what matters is that each site
be able to communicate, directly or indirectly, with every other site. For the remain-
der of this chapter, we assume that some type of communication network exists
among sites, regardless of any particular topology. We will not address any network-
specific issues, although it is important to understand that for an efficient operation
of a distributed database system (DDBS), network design and performance issues
are critical and are an integral part of the overall solution. The details of the under-
lying communication network are invisible to the end user.

25.1.2 Transparency
The concept of transparency extends the general idea of hiding implementation
details from end users. A highly transparent system offers a lot of flexibility to the
end user/application developer since it requires little or no awareness of underlying
details on their part. In the case of a traditional centralized database, transparency
simply pertains to logical and physical data independence for application develop-
ers. However, in a DDB scenario, the data and software are distributed over multiple
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sites connected by a computer network, so additional types of transparencies are
introduced.

Consider the company database in Figure 3.5 that we have been discussing through-
out the book. The EMPLOYEE, PROJECT, and WORKS_ON tables may be frag-
mented horizontally (that is, into sets of rows, as we will discuss in Section 25.4) and
stored with possible replication as shown in Figure 25.1. The following types of
transparencies are possible:

■ Data organization transparency (also known as distribution or network
transparency). This refers to freedom for the user from the operational
details of the network and the placement of the data in the distributed sys-
tem. It may be divided into location transparency and naming transparency.
Location transparency refers to the fact that the command used to perform
a task is independent of the location of the data and the location of the node
where the command was issued. Naming transparency implies that once a
name is associated with an object, the named objects can be accessed unam-
biguously without additional specification as to where the data is located.

■ Replication transparency. As we show in Figure 25.1, copies of the same
data objects may be stored at multiple sites for better availability, perfor-
mance, and reliability. Replication transparency makes the user unaware of
the existence of these copies.

■ Fragmentation transparency. Two types of fragmentation are possible.
Horizontal fragmentation distributes a relation (table) into subrelations
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that are subsets of the tuples (rows) in the original relation. Vertical frag-
mentation distributes a relation into subrelations where each subrelation is
defined by a subset of the columns of the original relation. A global query by
the user must be transformed into several fragment queries. Fragmentation
transparency makes the user unaware of the existence of fragments.

■ Other transparencies include design transparency and execution trans-
parency—referring to freedom from knowing how the distributed database
is designed and where a transaction executes.

25.1.3 Autonomy
Autonomy determines the extent to which individual nodes or DBs in a connected
DDB can operate independently. A high degree of autonomy is desirable for
increased flexibility and customized maintenance of an individual node. Autonomy
can be applied to design, communication, and execution. Design autonomy refers
to independence of data model usage and transaction management techniques
among nodes. Communication autonomy determines the extent to which each
node can decide on sharing of information with other nodes. Execution autonomy
refers to independence of users to act as they please.

25.1.4 Reliability and Availability
Reliability and availability are two of the most common potential advantages cited
for distributed databases. Reliability is broadly defined as the probability that a sys-
tem is running (not down) at a certain time point, whereas availability is the prob-
ability that the system is continuously available during a time interval. We can
directly relate reliability and availability of the database to the faults, errors, and fail-
ures associated with it. A failure can be described as a deviation of a system’s behav-
ior from that which is specified in order to ensure correct execution of operations.
Errors constitute that subset of system states that causes the failure. Fault is the
cause of an error.

To construct a system that is reliable, we can adopt several approaches. One com-
mon approach stresses fault tolerance; it recognizes that faults will occur, and
designs mechanisms that can detect and remove faults before they can result in a
system failure. Another more stringent approach attempts to ensure that the final
system does not contain any faults. This is done through an exhaustive design
process followed by extensive quality control and testing. A reliable DDBMS toler-
ates failures of underlying components and processes user requests so long as data-
base consistency is not violated. A DDBMS recovery manager has to deal with
failures arising from transactions, hardware, and communication networks.
Hardware failures can either be those that result in loss of main memory contents or
loss of secondary storage contents. Communication failures occur due to errors
associated with messages and line failures. Message errors can include their loss,
corruption, or out-of-order arrival at destination.
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25.1.5 Advantages of Distributed Databases
Organizations resort to distributed database management for various reasons.
Some important advantages are listed below.

1. Improved ease and flexibility of application development. Developing and
maintaining applications at geographically distributed sites of an organiza-
tion is facilitated owing to transparency of data distribution and control.

2. Increased reliability and availability. This is achieved by the isolation of
faults to their site of origin without affecting the other databases connected
to the network. When the data and DDBMS software are distributed over
several sites, one site may fail while other sites continue to operate. Only the
data and software that exist at the failed site cannot be accessed. This
improves both reliability and availability. Further improvement is achieved
by judiciously replicating data and software at more than one site. In a cen-
tralized system, failure at a single site makes the whole system unavailable to
all users. In a distributed database, some of the data may be unreachable, but
users may still be able to access other parts of the database. If the data in the
failed site had been replicated at another site prior to the failure, then the
user will not be affected at all.

3. Improved performance. A distributed DBMS fragments the database by
keeping the data closer to where it is needed most. Data localization reduces
the contention for CPU and I/O services and simultaneously reduces access
delays involved in wide area networks. When a large database is distributed
over multiple sites, smaller databases exist at each site. As a result, local
queries and transactions accessing data at a single site have better perfor-
mance because of the smaller local databases. In addition, each site has a
smaller number of transactions executing than if all transactions are submit-
ted to a single centralized database. Moreover, interquery and intraquery
parallelism can be achieved by executing multiple queries at different sites,
or by breaking up a query into a number of subqueries that execute in paral-
lel. This contributes to improved performance.

4. Easier expansion. In a distributed environment, expansion of the system in
terms of adding more data, increasing database sizes, or adding more proces-
sors is much easier.

The transparencies we discussed in Section 25.1.2 lead to a compromise between
ease of use and the overhead cost of providing transparency. Total transparency
provides the global user with a view of the entire DDBS as if it is a single centralized
system. Transparency is provided as a complement to autonomy, which gives the
users tighter control over local databases. Transparency features may be imple-
mented as a part of the user language, which may translate the required services into
appropriate operations. Additionally, transparency impacts the features that must
be provided by the operating system and the DBMS.
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25.1.6 Additional Functions of Distributed Databases
Distribution leads to increased complexity in the system design and implementa-
tion. To achieve the potential advantages listed previously, the DDBMS software
must be able to provide the following functions in addition to those of a centralized
DBMS:

■ Keeping track of data distribution. The ability to keep track of the data dis-
tribution, fragmentation, and replication by expanding the DDBMS catalog.

■ Distributed query processing. The ability to access remote sites and trans-
mit queries and data among the various sites via a communication network.

■ Distributed transaction management. The ability to devise execution
strategies for queries and transactions that access data from more than one
site and to synchronize the access to distributed data and maintain the
integrity of the overall database.

■ Replicated data management. The ability to decide which copy of a repli-
cated data item to access and to maintain the consistency of copies of a repli-
cated data item.

■ Distributed database recovery. The ability to recover from individual site
crashes and from new types of failures, such as the failure of communication
links.

■ Security. Distributed transactions must be executed with the proper man-
agement of the security of the data and the authorization/access privileges of
users.

■ Distributed directory (catalog) management. A directory contains infor-
mation (metadata) about data in the database. The directory may be global
for the entire DDB, or local for each site. The placement and distribution of
the directory are design and policy issues.

These functions themselves increase the complexity of a DDBMS over a centralized
DBMS. Before we can realize the full potential advantages of distribution, we must
find satisfactory solutions to these design issues and problems. Including all this
additional functionality is hard to accomplish, and finding optimal solutions is a
step beyond that.

25.2 Types of Distributed Database Systems
The term distributed database management system can describe various systems that
differ from one another in many respects. The main thing that all such systems have
in common is the fact that data and software are distributed over multiple sites con-
nected by some form of communication network. In this section we discuss a num-
ber of types of DDBMSs and the criteria and factors that make some of these
systems different.
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The first factor we consider is the degree of homogeneity of the DDBMS software.
If all servers (or individual local DBMSs) use identical software and all users
(clients) use identical software, the DDBMS is called homogeneous; otherwise, it is
called heterogeneous. Another factor related to the degree of homogeneity is the
degree of local autonomy. If there is no provision for the local site to function as a
standalone DBMS, then the system has no local autonomy. On the other hand, if
direct access by local transactions to a server is permitted, the system has some
degree of local autonomy.

Figure 25.2 shows classification of DDBMS alternatives along orthogonal axes of
distribution, autonomy, and heterogeneity. For a centralized database, there is com-
plete autonomy, but a total lack of distribution and heterogeneity (Point A in the
figure). We see that the degree of local autonomy provides further ground for classi-
fication into federated and multidatabase systems. At one extreme of the autonomy
spectrum, we have a DDBMS that looks like a centralized DBMS to the user, with
zero autonomy (Point B). A single conceptual schema exists, and all access to the
system is obtained through a site that is part of the DDBMS—which means that no
local autonomy exists. Along the autonomy axis we encounter two types of
DDBMSs called federated database system (Point C) and multidatabase system
(Point D). In such systems, each server is an independent and autonomous central-
ized DBMS that has its own local users, local transactions, and DBA, and hence has
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a very high degree of local autonomy. The term federated database system (FDBS)
is used when there is some global view or schema of the federation of databases that
is shared by the applications (Point C). On the other hand, a multidatabase system
has full local autonomy in that it does not have a global schema but interactively
constructs one as needed by the application (Point D).3 Both systems are hybrids
between distributed and centralized systems, and the distinction we made between
them is not strictly followed. We will refer to them as FDBSs in a generic sense. Point
D in the diagram may also stand for a system with full local autonomy and full het-
erogeneity—this could be a peer-to-peer database system (see Section 25.9.2). In a
heterogeneous FDBS, one server may be a relational DBMS, another a network
DBMS (such as Computer Associates’ IDMS or HP’S IMAGE/3000), and a third an
object DBMS (such as Object Design’s ObjectStore) or hierarchical DBMS (such as
IBM’s IMS); in such a case, it is necessary to have a canonical system language and
to include language translators to translate subqueries from the canonical language
to the language of each server.

We briefly discuss the issues affecting the design of FDBSs next.

25.2.1 Federated Database Management Systems Issues
The type of heterogeneity present in FDBSs may arise from several sources. We dis-
cuss these sources first and then point out how the different types of autonomies
contribute to a semantic heterogeneity that must be resolved in a heterogeneous
FDBS.

■ Differences in data models. Databases in an organization come from a vari-
ety of data models, including the so-called legacy models (hierarchical and
network, see Web Appendixes D and E), the relational data model, the object
data model, and even files. The modeling capabilities of the models vary.
Hence, to deal with them uniformly via a single global schema or to process
them in a single language is challenging. Even if two databases are both from
the RDBMS environment, the same information may be represented as an
attribute name, as a relation name, or as a value in different databases. This
calls for an intelligent query-processing mechanism that can relate informa-
tion based on metadata.

■ Differences in constraints. Constraint facilities for specification and imple-
mentation vary from system to system. There are comparable features that
must be reconciled in the construction of a global schema. For example, the
relationships from ER models are represented as referential integrity con-
straints in the relational model. Triggers may have to be used to implement
certain constraints in the relational model. The global schema must also deal
with potential conflicts among constraints.

3The term multidatabase system is not easily applicable to most enterprise IT environments. The notion
of constructing a global schema as and when the need arises is not very feasible in practice for enter-
prise databases.
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■ Differences in query languages. Even with the same data model, the lan-
guages and their versions vary. For example, SQL has multiple versions like
SQL-89, SQL-92, SQL-99, and SQL:2008, and each system has its own set of
data types, comparison operators, string manipulation features, and so on.

Semantic Heterogeneity. Semantic heterogeneity occurs when there are differ-
ences in the meaning, interpretation, and intended use of the same or related data.
Semantic heterogeneity among component database systems (DBSs) creates the
biggest hurdle in designing global schemas of heterogeneous databases. The design
autonomy of component DBSs refers to their freedom of choosing the following
design parameters, which in turn affect the eventual complexity of the FDBS:

■ The universe of discourse from which the data is drawn. For example, for
two customer accounts, databases in the federation may be from the United
States and Japan and have entirely different sets of attributes about customer
accounts required by the accounting practices. Currency rate fluctuations
would also present a problem. Hence, relations in these two databases that
have identical names—CUSTOMER or ACCOUNT—may have some com-
mon and some entirely distinct information.

■ Representation and naming. The representation and naming of data ele-
ments and the structure of the data model may be prespecified for each local
database.

■ The understanding, meaning, and subjective interpretation of data. This is
a chief contributor to semantic heterogeneity.

■ Transaction and policy constraints. These deal with serializability criteria,
compensating transactions, and other transaction policies.

■ Derivation of summaries. Aggregation, summarization, and other data-
processing features and operations supported by the system.

The above problems related to semantic heterogeneity are being faced by all major
multinational and governmental organizations in all application areas. In today’s
commercial environment, most enterprises are resorting to heterogeneous FDBSs,
having heavily invested in the development of individual database systems using
diverse data models on different platforms over the last 20 to 30 years. Enterprises
are using various forms of software—typically called the middleware, or Web-
based packages called application servers (for example, WebLogic or WebSphere)
and even generic systems, called Enterprise Resource Planning (ERP) systems (for
example, SAP, J. D. Edwards ERP)—to manage the transport of queries and transac-
tions from the global application to individual databases (with possible additional
processing for business rules) and the data from the heterogeneous database servers
to the global application. Detailed discussion of these types of software systems is
outside the scope of this book.

Just as providing the ultimate transparency is the goal of any distributed database
architecture, local component databases strive to preserve autonomy.
Communication autonomy of a component DBS refers to its ability to decide
whether to communicate with another component DBS. Execution autonomy
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refers to the ability of a component DBS to execute local operations without inter-
ference from external operations by other component DBSs and its ability to decide
the order in which to execute them. The association autonomy of a component
DBS implies that it has the ability to decide whether and how much to share its
functionality (operations it supports) and resources (data it manages) with other
component DBSs. The major challenge of designing FDBSs is to let component
DBSs interoperate while still providing the above types of autonomies to them.

25.3 Distributed Database Architectures
In this section, we first briefly point out the distinction between parallel and distrib-
uted database architectures. While both are prevalent in industry today, there are
various manifestations of the distributed architectures that are continuously evolv-
ing among large enterprises. The parallel architecture is more common in high-
performance computing, where there is a need for multiprocessor architectures to
cope with the volume of data undergoing transaction processing and warehousing
applications. We then introduce a generic architecture of a distributed database.
This is followed by discussions on the architecture of three-tier client-server and
federated database systems.

25.3.1 Parallel versus Distributed Architectures
There are two main types of multiprocessor system architectures that are common-
place:

■ Shared memory (tightly coupled) architecture. Multiple processors share
secondary (disk) storage and also share primary memory.

■ Shared disk (loosely coupled) architecture. Multiple processors share sec-
ondary (disk) storage but each has their own primary memory.

These architectures enable processors to communicate without the overhead of
exchanging messages over a network.4 Database management systems developed
using the above types of architectures are termed parallel database management
systems rather than DDBMSs, since they utilize parallel processor technology.
Another type of multiprocessor architecture is called shared nothing architecture.
In this architecture, every processor has its own primary and secondary (disk)
memory, no common memory exists, and the processors communicate over a high-
speed interconnection network (bus or switch). Although the shared nothing archi-
tecture resembles a distributed database computing environment, major differences
exist in the mode of operation. In shared nothing multiprocessor systems, there is
symmetry and homogeneity of nodes; this is not true of the distributed database
environment where heterogeneity of hardware and operating system at each node is
very common. Shared nothing architecture is also considered as an environment for

4If both primary and secondary memories are shared, the architecture is also known as shared everything

architecture.
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parallel databases. Figure 25.3a illustrates a parallel database (shared nothing),
whereas Figure 25.3b illustrates a centralized database with distributed access and
Figure 25.3c shows a pure distributed database. We will not expand on parallel
architectures and related data management issues here.
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25.3.2 General Architecture of Pure Distributed Databases
In this section we discuss both the logical and component architectural models of a
DDB. In Figure 25.4, which describes the generic schema architecture of a DDB, the
enterprise is presented with a consistent, unified view showing the logical structure
of underlying data across all nodes. This view is represented by the global concep-
tual schema (GCS), which provides network transparency (see Section 25.1.2). To
accommodate potential heterogeneity in the DDB, each node is shown as having its
own local internal schema (LIS) based on physical organization details at that par-
ticular site. The logical organization of data at each site is specified by the local con-
ceptual schema (LCS). The GCS, LCS, and their underlying mappings provide the
fragmentation and replication transparency discussed in Section 25.1.2. Figure 25.5
shows the component architecture of a DDB. It is an extension of its centralized
counterpart (Figure 2.3) in Chapter 2. For the sake of simplicity, common elements
are not shown here. The global query compiler references the global conceptual
schema from the global system catalog to verify and impose defined constraints.
The global query optimizer references both global and local conceptual schemas
and generates optimized local queries from global queries. It evaluates all candidate
strategies using a cost function that estimates cost based on response time (CPU,
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I/O, and network latencies) and estimated sizes of intermediate results. The latter is
particularly important in queries involving joins. Having computed the cost for
each candidate, the optimizer selects the candidate with the minimum cost for exe-
cution. Each local DBMS would have their local query optimizer, transaction man-
ager, and execution engines as well as the local system catalog, which houses the
local schemas. The global transaction manager is responsible for coordinating the
execution across multiple sites in conjunction with the local transaction manager at
those sites.

25.3.3 Federated Database Schema Architecture
Typical five-level schema architecture to support global applications in the FDBS
environment is shown in Figure 25.6. In this architecture, the local schema is the
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Figure 25.6
The five-level schema architecture
in a federated database system
(FDBS).

Source: Adapted from Sheth and
Larson, “Federated Database Systems
for Managing Distributed,
Heterogeneous, and Autonomous
Databases.” ACM Computing Surveys
(Vol. 22: No. 3, September 1990).

conceptual schema (full database definition) of a component database, and the
component schema is derived by translating the local schema into a canonical data
model or common data model (CDM) for the FDBS. Schema translation from the
local schema to the component schema is accompanied by generating mappings to
transform commands on a component schema into commands on the corres-
ponding local schema. The export schema represents the subset of a component
schema that is available to the FDBS. The federated schema is the global schema or
view, which is the result of integrating all the shareable export schemas. The
external schemas define the schema for a user group or an application, as in the
three-level schema architecture.5

All the problems related to query processing, transaction processing, and directory
and metadata management and recovery apply to FDBSs with additional considera-
tions. It is not within our scope to discuss them in detail here.

5For a detailed discussion of the autonomies and the five-level architecture of FDBMSs, see Sheth and
Larson (1990).
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Client
User interface or presentation tier

(Web browser, HTML, JavaScript, Visual Basic, . . .)

HTTP Protocol

Application server
Application (business) logic tier

(Application program, JAVA, C/C++, C#, . . .)

Database server
Query and transaction processing tier

(Database access, SQL, PSM, XML, . . .)

ODBC, JDBC, SQL/CLI, SQLJ

Figure 25.7
The three-tier
client-server
architecture.

25.3.4 An Overview of Three-Tier Client-Server Architecture
As we pointed out in the chapter introduction, full-scale DDBMSs have not been
developed to support all the types of functionalities that we have discussed so far.
Instead, distributed database applications are being developed in the context of the
client-server architectures. We introduced the two-tier client-server architecture in
Section 2.5. It is now more common to use a three-tier architecture, particularly in
Web applications. This architecture is illustrated in Figure 25.7.

In the three-tier client-server architecture, the following three layers exist:

1. Presentation layer (client). This provides the user interface and interacts
with the user. The programs at this layer present Web interfaces or forms to
the client in order to interface with the application. Web browsers are often
utilized, and the languages and specifications used include HTML, XHTML,
CSS, Flash, MathML, Scalable Vector Graphics (SVG), Java, JavaScript,
Adobe Flex, and others. This layer handles user input, output, and naviga-
tion by accepting user commands and displaying the needed information,
usually in the form of static or dynamic Web pages. The latter are employed
when the interaction involves database access. When a Web interface is used,
this layer typically communicates with the application layer via the HTTP
protocol.

2. Application layer (business logic). This layer programs the application
logic. For example, queries can be formulated based on user input from the
client, or query results can be formatted and sent to the client for presenta-
tion. Additional application functionality can be handled at this layer, such
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as security checks, identity verification, and other functions. The application
layer can interact with one or more databases or data sources as needed by
connecting to the database using ODBC, JDBC, SQL/CLI, or other database
access techniques.

3. Database server. This layer handles query and update requests from the
application layer, processes the requests, and sends the results. Usually SQL is
used to access the database if it is relational or object-relational and stored
database procedures may also be invoked. Query results (and queries) may
be formatted into XML (see Chapter 12) when transmitted between the
application server and the database server.

Exactly how to divide the DBMS functionality between the client, application
server, and database server may vary. The common approach is to include the func-
tionality of a centralized DBMS at the database server level. A number of relational
DBMS products have taken this approach, where an SQL server is provided. The
application server must then formulate the appropriate SQL queries and connect to
the database server when needed. The client provides the processing for user inter-
face interactions. Since SQL is a relational standard, various SQL servers, possibly
provided by different vendors, can accept SQL commands through standards such
as ODBC, JDBC, and SQL/CLI (see Chapter 13).

In this architecture, the application server may also refer to a data dictionary that
includes information on the distribution of data among the various SQL servers, as
well as modules for decomposing a global query into a number of local queries that
can be executed at the various sites. Interaction between an application server and
database server might proceed as follows during the processing of an SQL query:

1. The application server formulates a user query based on input from the
client layer and decomposes it into a number of independent site queries.
Each site query is sent to the appropriate database server site.

2. Each database server processes the local query and sends the results to the
application server site. Increasingly, XML is being touted as the standard for
data exchange (see Chapter 12), so the database server may format the query
result into XML before sending it to the application server.

3. The application server combines the results of the subqueries to produce the
result of the originally required query, formats it into HTML or some other
form accepted by the client, and sends it to the client site for display.

The application server is responsible for generating a distributed execution plan for
a multisite query or transaction and for supervising distributed execution by send-
ing commands to servers. These commands include local queries and transactions
to be executed, as well as commands to transmit data to other clients or servers.
Another function controlled by the application server (or coordinator) is that of
ensuring consistency of replicated copies of a data item by employing distributed
(or global) concurrency control techniques. The application server must also ensure
the atomicity of global transactions by performing global recovery when certain
sites fail.
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If the DDBMS has the capability to hide the details of data distribution from the
application server, then it enables the application server to execute global queries
and transactions as though the database were centralized, without having to specify
the sites at which the data referenced in the query or transaction resides. This prop-
erty is called distribution transparency. Some DDBMSs do not provide distribu-
tion transparency, instead requiring that applications are aware of the details of data
distribution.

25.4 Data Fragmentation, Replication, 
and Allocation Techniques for Distributed
Database Design

In this section we discuss techniques that are used to break up the database into log-
ical units, called fragments, which may be assigned for storage at the various sites.
We also discuss the use of data replication, which permits certain data to be stored
in more than one site, and the process of allocating fragments—or replicas of frag-
ments—for storage at the various sites. These techniques are used during the
process of distributed database design. The information concerning data fragmen-
tation, allocation, and replication is stored in a global directory that is accessed by
the DDBS applications as needed.

25.4.1 Data Fragmentation
In a DDB, decisions must be made regarding which site should be used to store
which portions of the database. For now, we will assume that there is no replication;
that is, each relation—or portion of a relation—is stored at one site only. We discuss
replication and its effects later in this section. We also use the terminology of rela-
tional databases, but similar concepts apply to other data models. We assume that
we are starting with a relational database schema and must decide on how to dis-
tribute the relations over the various sites. To illustrate our discussion, we use the
relational database schema in Figure 3.5.

Before we decide on how to distribute the data, we must determine the logical units
of the database that are to be distributed. The simplest logical units are the relations
themselves; that is, each whole relation is to be stored at a particular site. In our
example, we must decide on a site to store each of the relations EMPLOYEE,
DEPARTMENT, PROJECT, WORKS_ON, and DEPENDENT in Figure 3.5. In many
cases, however, a relation can be divided into smaller logical units for distribution.
For example, consider the company database shown in Figure 3.6, and assume there
are three computer sites—one for each department in the company.6

We may want to store the database information relating to each department at the
computer site for that department. A technique called horizontal fragmentation can
be used to partition each relation by department.

6Of course, in an actual situation, there will be many more tuples in the relation than those shown in
Figure 3.6.
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Horizontal Fragmentation. A horizontal fragment of a relation is a subset of
the tuples in that relation. The tuples that belong to the horizontal fragment are
specified by a condition on one or more attributes of the relation. Often, only a sin-
gle attribute is involved. For example, we may define three horizontal fragments on 
the EMPLOYEE relation in Figure 3.6 with the following conditions: (Dno = 5),
(Dno = 4), and (Dno = 1)—each fragment contains the EMPLOYEE tuples working
for a particular department. Similarly, we may define three horizontal fragments
for the PROJECT relation, with the conditions (Dnum = 5), (Dnum = 4), and 
(Dnum = 1)—each fragment contains the PROJECT tuples controlled by a particu-
lar department. Horizontal fragmentation divides a relation horizontally by
grouping rows to create subsets of tuples, where each subset has a certain logical
meaning. These fragments can then be assigned to different sites in the distributed
system. Derived horizontal fragmentation applies the partitioning of a primary
relation (DEPARTMENT in our example) to other secondary relations (EMPLOYEE
and PROJECT in our example), which are related to the primary via a foreign key.
This way, related data between the primary and the secondary relations gets frag-
mented in the same way.

Vertical Fragmentation. Each site may not need all the attributes of a relation,
which would indicate the need for a different type of fragmentation. Vertical frag-
mentation divides a relation “vertically” by columns. A vertical fragment of a rela-
tion keeps only certain attributes of the relation. For example, we may want to
fragment the EMPLOYEE relation into two vertical fragments. The first fragment
includes personal information—Name, Bdate, Address, and Sex—and the second
includes work-related information—Ssn, Salary, Super_ssn, and Dno. This vertical
fragmentation is not quite proper, because if the two fragments are stored sepa-
rately, we cannot put the original employee tuples back together, since there is no
common attribute between the two fragments. It is necessary to include the primary
key or some candidate key attribute in every vertical fragment so that the full rela-
tion can be reconstructed from the fragments. Hence, we must add the Ssn attribute
to the personal information fragment.

Notice that each horizontal fragment on a relation R can be specified in the rela-
tional algebra by a σCi

(R) operation. A set of horizontal fragments whose conditions
C1, C2, ..., Cn include all the tuples in R—that is, every tuple in R satisfies (C1 OR C2
OR ... OR Cn)—is called a complete horizontal fragmentation of R. In many cases
a complete horizontal fragmentation is also disjoint; that is, no tuple in R satisfies
(Ci AND Cj) for any i ≠ j. Our two earlier examples of horizontal fragmentation for
the EMPLOYEE and PROJECT relations were both complete and disjoint. To recon-
struct the relation R from a complete horizontal fragmentation, we need to apply the
UNION operation to the fragments.

A vertical fragment on a relation R can be specified by a πLi
(R) operation in the rela-

tional algebra. A set of vertical fragments whose projection lists L1, L2, ..., Ln include
all the attributes in R but share only the primary key attribute of R is called a
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complete vertical fragmentation of R. In this case the projection lists satisfy the fol-
lowing two conditions:

■ L1 ∪ L2 ∪ ... ∪ Ln = ATTRS(R).

■ Li ∩ Lj = PK(R) for any i ≠ j, where ATTRS(R) is the set of attributes of R and
PK(R) is the primary key of R.

To reconstruct the relation R from a complete vertical fragmentation, we apply the
OUTER UNION operation to the vertical fragments (assuming no horizontal frag-
mentation is used). Notice that we could also apply a FULL OUTER JOIN operation
and get the same result for a complete vertical fragmentation, even when some hor-
izontal fragmentation may also have been applied. The two vertical fragments of the
EMPLOYEE relation with projection lists L1 = {Ssn, Name, Bdate, Address, Sex} and
L2 = {Ssn, Salary, Super_ssn, Dno} constitute a complete vertical fragmentation of
EMPLOYEE.

Two horizontal fragments that are neither complete nor disjoint are those defined
on the EMPLOYEE relation in Figure 3.5 by the conditions (Salary > 50000) and 
(Dno = 4); they may not include all EMPLOYEE tuples, and they may include com-
mon tuples. Two vertical fragments that are not complete are those defined by the
attribute lists L1 = {Name, Address} and L2 = {Ssn, Name, Salary}; these lists violate
both conditions of a complete vertical fragmentation.

Mixed (Hybrid) Fragmentation. We can intermix the two types of fragmenta-
tion, yielding a mixed fragmentation. For example, we may combine the horizon-
tal and vertical fragmentations of the EMPLOYEE relation given earlier into a
mixed fragmentation that includes six fragments. In this case, the original relation
can be reconstructed by applying UNION and OUTER UNION (or OUTER JOIN)
operations in the appropriate order. In general, a fragment of a relation R can be
specified by a SELECT-PROJECT combination of operations πL(σC(R)). If
C = TRUE (that is, all tuples are selected) and L ≠ ATTRS(R), we get a vertical frag-
ment, and if C ≠ TRUE and L = ATTRS(R), we get a horizontal fragment. Finally, if
C ≠ TRUE and L ≠ ATTRS(R), we get a mixed fragment. Notice that a relation can
itself be considered a fragment with C = TRUE and L = ATTRS(R). In the following
discussion, the term fragment is used to refer to a relation or to any of the preced-
ing types of fragments.

A fragmentation schema of a database is a definition of a set of fragments that
includes all attributes and tuples in the database and satisfies the condition that the
whole database can be reconstructed from the fragments by applying some
sequence of OUTER UNION (or OUTER JOIN) and UNION operations. It is also
sometimes useful—although not necessary—to have all the fragments be disjoint
except for the repetition of primary keys among vertical (or mixed) fragments. In
the latter case, all replication and distribution of fragments is clearly specified at a
subsequent stage, separately from fragmentation.

An allocation schema describes the allocation of fragments to sites of the DDBS;
hence, it is a mapping that specifies for each fragment the site(s) at which it is
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stored. If a fragment is stored at more than one site, it is said to be replicated. We
discuss data replication and allocation next.

25.4.2 Data Replication and Allocation
Replication is useful in improving the availability of data. The most extreme case is
replication of the whole database at every site in the distributed system, thus creating a
fully replicated distributed database. This can improve availability remarkably
because the system can continue to operate as long as at least one site is up. It also
improves performance of retrieval for global queries because the results of such
queries can be obtained locally from any one site; hence, a retrieval query can be
processed at the local site where it is submitted, if that site includes a server module.
The disadvantage of full replication is that it can slow down update operations drasti-
cally, since a single logical update must be performed on every copy of the database to
keep the copies consistent. This is especially true if many copies of the database exist.
Full replication makes the concurrency control and recovery techniques more expen-
sive than they would be if there was no replication, as we will see in Section 25.7.

The other extreme from full replication involves having no replication—that is,
each fragment is stored at exactly one site. In this case, all fragments must be dis-
joint, except for the repetition of primary keys among vertical (or mixed) frag-
ments. This is also called nonredundant allocation.

Between these two extremes, we have a wide spectrum of partial replication of the
data—that is, some fragments of the database may be replicated whereas others may
not. The number of copies of each fragment can range from one up to the total num-
ber of sites in the distributed system. A special case of partial replication is occurring
heavily in applications where mobile workers—such as sales forces, financial plan-
ners, and claims adjustors—carry partially replicated databases with them on laptops
and PDAs and synchronize them periodically with the server database.7 A descrip-
tion of the replication of fragments is sometimes called a replication schema.

Each fragment—or each copy of a fragment—must be assigned to a particular site
in the distributed system. This process is called data distribution (or data alloca-
tion). The choice of sites and the degree of replication depend on the performance
and availability goals of the system and on the types and frequencies of transactions
submitted at each site. For example, if high availability is required, transactions can
be submitted at any site, and most transactions are retrieval only, a fully replicated
database is a good choice. However, if certain transactions that access particular
parts of the database are mostly submitted at a particular site, the corresponding set
of fragments can be allocated at that site only. Data that is accessed at multiple sites
can be replicated at those sites. If many updates are performed, it may be useful to
limit replication. Finding an optimal or even a good solution to distributed data
allocation is a complex optimization problem.

7For a proposed scalable approach to synchronize partially replicated databases, see Mahajan et al.
(1998).
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25.4.3 Example of Fragmentation, Allocation, and Replication
We now consider an example of fragmenting and distributing the company data-
base in Figures 3.5 and 3.6. Suppose that the company has three computer sites—
one for each current department. Sites 2 and 3 are for departments 5 and 4,
respectively. At each of these sites, we expect frequent access to the EMPLOYEE and
PROJECT information for the employees who work in that department and the proj-
ects controlled by that department. Further, we assume that these sites mainly access
the Name, Ssn, Salary, and Super_ssn attributes of EMPLOYEE. Site 1 is used by com-
pany headquarters and accesses all employee and project information regularly, in
addition to keeping track of DEPENDENT information for insurance purposes.

According to these requirements, the whole database in Figure 3.6 can be stored at
site 1. To determine the fragments to be replicated at sites 2 and 3, first we can hori-
zontally fragment DEPARTMENT by its key Dnumber. Then we apply derived frag-
mentation to the EMPLOYEE, PROJECT, and DEPT_LOCATIONS relations based on
their foreign keys for department number—called Dno, Dnum, and Dnumber, respec-
tively, in Figure 3.5. We can vertically fragment the resulting EMPLOYEE fragments
to include only the attributes {Name, Ssn, Salary, Super_ssn, Dno}. Figure 25.8 shows
the mixed fragments EMPD_5 and EMPD_4, which include the EMPLOYEE tuples
satisfying the conditions Dno = 5 and Dno = 4, respectively. The horizontal frag-
ments of PROJECT, DEPARTMENT, and DEPT_LOCATIONS are similarly fragmented
by department number. All these fragments—stored at sites 2 and 3—are replicated
because they are also stored at headquarters—site 1.

We must now fragment the WORKS_ON relation and decide which fragments of
WORKS_ON to store at sites 2 and 3. We are confronted with the problem that no
attribute of WORKS_ON directly indicates the department to which each tuple
belongs. In fact, each tuple in WORKS_ON relates an employee e to a project P. We
could fragment WORKS_ON based on the department D in which e works or based
on the department D� that controls P. Fragmentation becomes easy if we have a con-
straint stating that D = D� for all WORKS_ON tuples—that is, if employees can work
only on projects controlled by the department they work for. However, there is no
such constraint in our database in Figure 3.6. For example, the WORKS_ON tuple
<333445555, 10, 10.0> relates an employee who works for department 5 with a
project controlled by department 4. In this case, we could fragment WORKS_ON
based on the department in which the employee works (which is expressed by the
condition C) and then fragment further based on the department that controls the
projects that employee is working on, as shown in Figure 25.9.

In Figure 25.9, the union of fragments G1, G2, and G3 gives all WORKS_ON tuples
for employees who work for department 5. Similarly, the union of fragments G4, G5,
and G6 gives all WORKS_ON tuples for employees who work for department 4. On
the other hand, the union of fragments G1, G4, and G7 gives all WORKS_ON tuples
for projects controlled by department 5. The condition for each of the fragments G1
through G9 is shown in Figure 25.9 The relations that represent M:N relationships,
such as WORKS_ON, often have several possible logical fragmentations. In our dis-
tribution in Figure 25.8, we choose to include all fragments that can be joined to
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(a)

(b)

Fname

John B Smith 123456789 30000 333445555 5

Franklin T Wong 333445555 40000 888665555 5

K Narayan 666884444 38000 333445555 5

A English 453453453 25000 333445555 5

Ramesh

Joyce

EMPD_5

Minit Lname Ssn Salary Super_ssn Dno

Data at site 2

Data at site 3

Fname

Alicia J Zelaya 999887777 25000 987654321 4

Jennifer S Wallace 987654321 43000 888665555 4

V Jabbar 987987987 25000 987654321 4Ahmad

EMPD_4

Minit Lname Ssn Salary Super_ssn Dno

Dname

Research 5 333445555 1988-05-22

DEP_5

Dnumber Mgr_ssn Mgr_start_date Dnumber

5 Bellaire

5 Sugarland

5 Houston

DEP_5_LOCS

Location

Dname

Administration 4 987654321 1995-01-01

DEP_4

Dnumber Mgr_ssn Mgr_start_date

Essn

123456789 1

123456789 2

666884444

453453453

453453453

333445555

333445555

333445555

333445555

1

2

2

3

10

20

3

32.5

7.5

20.0

20.0

10.0

10.0

10.0

10.0

40.0

WORKS_ON_5

Pno Hours Pname

Product X 1

Product Y 2

Product Z 3

Bellaire

Sugarland

Houston

PROJS_5

Pnumber Plocation

5

5

5

Dnum

Essn

333445555 10

999887777 30

999887777

987987987

987987987

987654321

987654321

10

30

30

20

10

10.0

30.0

35.0

5.0

20.0

15.0

10.0

WORKS_ON_4

Pno Hours Pname

Computerization 10

New_benefits 30

Stafford

Stafford

PROJS_4

Pnumber Plocation

4

4

Dnum

Dnumber

4 Stafford

DEP_4_LOCS

Location

Figure 25.8
Allocation of fragments to
sites. (a) Relation fragments
at site 2 corresponding to
department 5. (b) Relation
fragments at site 3 corre-
sponding to department 4.
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Essn

123456789 1 32.5

123456789 2 7.5

3 40.0

1 20.0

2 20.0

2 10.0

3 10.0

666884444

453453453

453453453

333445555

333445555

G1

1C   = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 5))

Employees in Department 5

Pno Hours Essn

333445555 10 10.0

G2

C2 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 4))

Pno Hours Essn

333445555 20 10.0

G3

C3 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 1))

Pno Hours

Essn

G4

(b)

(c)

(a)

C4 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 5))

Employees in Department 4

Pno Hours Essn

999887777 30 30.0

999887777 10 10.0

987987987 10 35.0

987987987 30 5.0

987654321 30 20.0

G5

C5 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 4))

Pno Hours Essn

987654321 20 15.0

G6

C6 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 1))

Pno Hours

Essn

G7

C7 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 5))

Employees in Department 1

Pno Hours Essn

G8

C8 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 4))

Pno Hours Essn

888665555 20 Null

G9

C9 = C and (Pno in (SELECT 
Pnumber FROM PROJECT
WHERE Dnum = 1))

Pno Hours

Figure 25.9
Complete and disjoint fragments of the WORKS_ON relation. (a) Fragments of WORKS_ON for employees
working in department 5 (C=[Essn in (SELECT Ssn FROM EMPLOYEE WHERE Dno=5)]). (b) Fragments of
WORKS_ON for employees working in department 4 (C=[Essn in (SELECT Ssn FROM EMPLOYEE WHERE
Dno=4)]). (c) Fragments of WORKS_ON for employees working in department 1 (C=[Essn in (SELECT Ssn
FROM EMPLOYEE WHERE Dno=1)]).
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either an EMPLOYEE tuple or a PROJECT tuple at sites 2 and 3. Hence, we place the
union of fragments G1, G2, G3, G4, and G7 at site 2 and the union of fragments G4,
G5, G6, G2, and G8 at site 3. Notice that fragments G2 and G4 are replicated at both
sites. This allocation strategy permits the join between the local EMPLOYEE or
PROJECT fragments at site 2 or site 3 and the local WORKS_ON fragment to be per-
formed completely locally. This clearly demonstrates how complex the problem of
database fragmentation and allocation is for large databases. The Selected
Bibliography at the end of this chapter discusses some of the work done in this area.

25.5 Query Processing and Optimization in
Distributed Databases

Now we give an overview of how a DDBMS processes and optimizes a query. First
we discuss the steps involved in query processing and then elaborate on the commu-
nication costs of processing a distributed query. Finally we discuss a special opera-
tion, called a semijoin, which is used to optimize some types of queries in a DDBMS.
A detailed discussion about optimization algorithms is beyond the scope of this
book. We attempt to illustrate optimization principles using suitable examples.8

25.5.1 Distributed Query Processing
A distributed database query is processed in stages as follows:

1. Query Mapping. The input query on distributed data is specified formally
using a query language. It is then translated into an algebraic query on global
relations. This translation is done by referring to the global conceptual
schema and does not take into account the actual distribution and replica-
tion of data. Hence, this translation is largely identical to the one performed
in a centralized DBMS. It is first normalized, analyzed for semantic errors,
simplified, and finally restructured into an algebraic query.

2. Localization. In a distributed database, fragmentation results in relations
being stored in separate sites, with some fragments possibly being replicated.
This stage maps the distributed query on the global schema to separate
queries on individual fragments using data distribution and replication
information.

3. Global Query Optimization. Optimization consists of selecting a strategy
from a list of candidates that is closest to optimal. A list of candidate queries
can be obtained by permuting the ordering of operations within a fragment
query generated by the previous stage. Time is the preferred unit for measur-
ing cost. The total cost is a weighted combination of costs such as CPU cost,
I/O costs, and communication costs. Since DDBs are connected by a net-
work, often the communication costs over the network are the most signifi-
cant. This is especially true when the sites are connected through a wide area
network (WAN).

8For a detailed discussion of optimization algorithms, see Ozsu and Valduriez (1999).
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4. Local Query Optimization. This stage is common to all sites in the DDB.
The techniques are similar to those used in centralized systems.

The first three stages discussed above are performed at a central control site, while
the last stage is performed locally.

25.5.2 Data Transfer Costs of Distributed Query Processing
We discussed the issues involved in processing and optimizing a query in a central-
ized DBMS in Chapter 19. In a distributed system, several additional factors further
complicate query processing. The first is the cost of transferring data over the net-
work. This data includes intermediate files that are transferred to other sites for fur-
ther processing, as well as the final result files that may have to be transferred to the
site where the query result is needed. Although these costs may not be very high if
the sites are connected via a high-performance local area network, they become
quite significant in other types of networks. Hence, DDBMS query optimization
algorithms consider the goal of reducing the amount of data transfer as an optimiza-
tion criterion in choosing a distributed query execution strategy.

We illustrate this with two simple sample queries. Suppose that the EMPLOYEE and
DEPARTMENT relations in Figure 3.5 are distributed at two sites as shown in Figure
25.10. We will assume in this example that neither relation is fragmented. According
to Figure 25.10, the size of the EMPLOYEE relation is 100 * 10,000 = 106 bytes, and
the size of the DEPARTMENT relation is 35 * 100 = 3500 bytes. Consider the query Q:
For each employee, retrieve the employee name and the name of the department for
which the employee works. This can be stated as follows in the relational algebra:

Q: πFname,Lname,Dname(EMPLOYEE Dno=Dnumber DEPARTMENT)

The result of this query will include 10,000 records, assuming that every employee is
related to a department. Suppose that each record in the query result is 40 bytes long.

Fname

EMPLOYEE

Site 1:

10,000 records
each record is 100 bytes long
Ssn field is 9 bytes long
Dno field is 4 bytes long

Site 2:

Minit Lname Ssn Salary Super_ssn DnoBdate Address Sex

Dname

DEPARTMENT

Dnumber Mgr_ssn Mgr_start_date

Fname field is 15 bytes long
Lname field is 15 bytes long

100 records
each record is 35 bytes long
Dnumber field is 4 bytes long
Mgr_ssn field is 9 bytes long

Dname field is 10 bytes long

Figure 25.10
Example to illustrate
volume of data
transferred.
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The query is submitted at a distinct site 3, which is called the result site because the
query result is needed there. Neither the EMPLOYEE nor the DEPARTMENT relations
reside at site 3. There are three simple strategies for executing this distributed query:

1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result
site, and perform the join at site 3. In this case, a total of 1,000,000 + 3,500 =
1,003,500 bytes must be transferred.

2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and send
the result to site 3. The size of the query result is 40 * 10,000 = 400,000 bytes,
so 400,000 + 1,000,000 = 1,400,000 bytes must be transferred.

3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, and
send the result to site 3. In this case, 400,000 + 3,500 = 403,500 bytes must be
transferred.

If minimizing the amount of data transfer is our optimization criterion, we should
choose strategy 3. Now consider another query Q�: For each department, retrieve the
department name and the name of the department manager. This can be stated as fol-
lows in the relational algebra:

Q�: πFname,Lname,Dname( DEPARTMENT Mgr_ssn=Ssn EMPLOYEE)

Again, suppose that the query is submitted at site 3. The same three strategies for
executing query Q apply to Q�, except that the result of Q� includes only 100 records,
assuming that each department has a manager:

1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result
site, and perform the join at site 3. In this case, a total of 1,000,000 + 3,500 =
1,003,500 bytes must be transferred.

2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and send
the result to site 3. The size of the query result is 40 * 100 = 4,000 bytes, so
4,000 + 1,000,000 = 1,004,000 bytes must be transferred.

3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, and
send the result to site 3. In this case, 4,000 + 3,500 = 7,500 bytes must be
transferred.

Again, we would choose strategy 3—this time by an overwhelming margin over
strategies 1 and 2. The preceding three strategies are the most obvious ones for the
case where the result site (site 3) is different from all the sites that contain files
involved in the query (sites 1 and 2). However, suppose that the result site is site 2;
then we have two simple strategies:

1. Transfer the EMPLOYEE relation to site 2, execute the query, and present the
result to the user at site 2. Here, the same number of bytes—1,000,000—
must be transferred for both Q and Q�.

2. Transfer the DEPARTMENT relation to site 1, execute the query at site 1, and
send the result back to site 2. In this case 400,000 + 3,500 = 403,500 bytes
must be transferred for Q and 4,000 + 3,500 = 7,500 bytes for Q�.
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A more complex strategy, which sometimes works better than these simple strate-
gies, uses an operation called semijoin. We introduce this operation and discuss dis-
tributed execution using semijoins next.

25.5.3 Distributed Query Processing Using Semijoin
The idea behind distributed query processing using the semijoin operation is to
reduce the number of tuples in a relation before transferring it to another site.
Intuitively, the idea is to send the joining column of one relation R to the site where
the other relation S is located; this column is then joined with S. Following that, the
join attributes, along with the attributes required in the result, are projected out and
shipped back to the original site and joined with R. Hence, only the joining column
of R is transferred in one direction, and a subset of S with no extraneous tuples or
attributes is transferred in the other direction. If only a small fraction of the tuples
in S participate in the join, this can be quite an efficient solution to minimizing data
transfer.

To illustrate this, consider the following strategy for executing Q or Q�:

1. Project the join attributes of DEPARTMENT at site 2, and transfer them to site
1. For Q, we transfer F = πDnumber(DEPARTMENT), whose size is 4 * 100 = 400
bytes, whereas, for Q�, we transfer F� = πMgr_ssn(DEPARTMENT), whose size is
9 * 100 = 900 bytes.

2. Join the transferred file with the EMPLOYEE relation at site 1, and transfer
the required attributes from the resulting file to site 2. For Q, we transfer 
R = πDno, Fname, Lname(F Dnumber=Dno EMPLOYEE), whose size is 34 * 10,000 =
340,000 bytes, whereas, for Q�, we transfer R� = πMgr_ssn, Fname, Lname
(F� Mgr_ssn=Ssn EMPLOYEE), whose size is 39 * 100 = 3,900 bytes.

3. Execute the query by joining the transferred file R or R� with DEPARTMENT,
and present the result to the user at site 2.

Using this strategy, we transfer 340,400 bytes for Q and 4,800 bytes for Q�. We lim-
ited the EMPLOYEE attributes and tuples transmitted to site 2 in step 2 to only those
that will actually be joined with a DEPARTMENT tuple in step 3. For query Q, this
turned out to include all EMPLOYEE tuples, so little improvement was achieved.
However, for Q� only 100 out of the 10,000 EMPLOYEE tuples were needed.

The semijoin operation was devised to formalize this strategy. A semijoin opera-
tion R A=B S, where A and B are domain-compatible attributes of R and S, respec-
tively, produces the same result as the relational algebra expression π

R
(R

A=B
S). In

a distributed environment where R and S reside at different sites, the semijoin is
typically implemented by first transferring F = π

B
(S) to the site where R resides and

then joining F with R, thus leading to the strategy discussed here.

Notice that the semijoin operation is not commutative; that is,

R S ≠S R
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25.5.4 Query and Update Decomposition
In a DDBMS with no distribution transparency, the user phrases a query directly in
terms of specific fragments. For example, consider another query Q: Retrieve the
names and hours per week for each employee who works on some project controlled by
department 5, which is specified on the distributed database where the relations at
sites 2 and 3 are shown in Figure 25.8, and those at site 1 are shown in Figure 3.6, as
in our earlier example. A user who submits such a query must specify whether it ref-
erences the PROJS_5 and WORKS_ON_5 relations at site 2 (Figure 25.8) or the
PROJECT and WORKS_ON relations at site 1 (Figure 3.6). The user must also main-
tain consistency of replicated data items when updating a DDBMS with no replica-
tion transparency.

On the other hand, a DDBMS that supports full distribution, fragmentation, and
replication transparency allows the user to specify a query or update request on the
schema in Figure 3.5 just as though the DBMS were centralized. For updates, the
DDBMS is responsible for maintaining consistency among replicated items by using
one of the distributed concurrency control algorithms to be discussed in Section
25.7. For queries, a query decomposition module must break up or decompose a
query into subqueries that can be executed at the individual sites. Additionally, a
strategy for combining the results of the subqueries to form the query result must be
generated. Whenever the DDBMS determines that an item referenced in the query is
replicated, it must choose or materialize a particular replica during query execution.

To determine which replicas include the data items referenced in a query, the
DDBMS refers to the fragmentation, replication, and distribution information
stored in the DDBMS catalog. For vertical fragmentation, the attribute list for each
fragment is kept in the catalog. For horizontal fragmentation, a condition, some-
times called a guard, is kept for each fragment. This is basically a selection condition
that specifies which tuples exist in the fragment; it is called a guard because only
tuples that satisfy this condition are permitted to be stored in the fragment. For mixed
fragments, both the attribute list and the guard condition are kept in the catalog.

In our earlier example, the guard conditions for fragments at site 1 (Figure 3.6) are
TRUE (all tuples), and the attribute lists are * (all attributes). For the fragments
shown in Figure 25.8, we have the guard conditions and attribute lists shown in
Figure 25.11. When the DDBMS decomposes an update request, it can determine
which fragments must be updated by examining their guard conditions. For exam-
ple, a user request to insert a new EMPLOYEE tuple <‘Alex’, ‘B’, ‘Coleman’,
‘345671239’, ‘22-APR-64’, ‘3306 Sandstone, Houston, TX’, M, 33000, ‘987654321’, 4>
would be decomposed by the DDBMS into two insert requests: the first inserts the
preceding tuple in the EMPLOYEE fragment at site 1, and the second inserts the pro-
jected tuple <‘Alex’, ‘B’, ‘Coleman’, ‘345671239’, 33000, ‘987654321’, 4> in the EMPD4
fragment at site 3.

For query decomposition, the DDBMS can determine which fragments may 
contain the required tuples by comparing the query condition with the guard 
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(a) EMPD5
attribute list: Fname, Minit, Lname, Ssn, Salary, Super_ssn, Dno

guard condition: Dno=5
DEP5

attribute list: * (all attributes Dname, Dnumber, Mgr_ssn, Mgr_start_date)
guard condition: Dnumber=5
DEP5_LOCS

attribute list: * (all attributes Dnumber, Location)
guard condition: Dnumber=5
PROJS5

attribute list: * (all attributes Pname, Pnumber, Plocation, Dnum)
guard condition: Dnum=5
WORKS_ON5

attribute list: * (all attributes Essn, Pno,Hours)
guard condition: Essn IN (πSsn (EMPD5)) OR Pno IN (πPnumber (PROJS5))

(b) EMPD4
attribute list: Fname, Minit, Lname, Ssn, Salary, Super_ssn, Dno

guard condition: Dno=4
DEP4

attribute list: * (all attributes Dname, Dnumber, Mgr_ssn, Mgr_start_date)
guard condition: Dnumber=4
DEP4_LOCS

attribute list: * (all attributes Dnumber, Location)
guard condition: Dnumber=4
PROJS4

attribute list: * (all attributes Pname, Pnumber, Plocation, Dnum)
guard condition: Dnum=4
WORKS_ON4

attribute list: * (all attributes Essn, Pno, Hours)
guard condition: Essn IN (πSsn (EMPD4))

OR Pno IN (πPnumber (PROJS4))

Figure 25.11
Guard conditions and attributes lists for fragments.
(a) Site 2 fragments. (b) Site 3 fragments.

conditions. For example, consider the query Q: Retrieve the names and hours per
week for each employee who works on some project controlled by department 5. This
can be specified in SQL on the schema in Figure 3.5 as follows:

Q: SELECT Fname, Lname, Hours
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Dnum=5 AND Pnumber=Pno AND Essn=Ssn;
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Suppose that the query is submitted at site 2, which is where the query result will be
needed. The DDBMS can determine from the guard condition on PROJS5 and
WORKS_ON5 that all tuples satisfying the conditions (Dnum = 5 AND Pnumber =
Pno) reside at site 2. Hence, it may decompose the query into the following rela-
tional algebra subqueries:

T1 ← πEssn(PROJS5 Pnumber=PnoWORKS_ON5)

T2 ← πEssn, Fname, Lname(T1 Essn=SsnEMPLOYEE)

RESULT ← πFname, Lname, Hours(T2 * WORKS_ON5)

This decomposition can be used to execute the query by using a semijoin strategy.
The DDBMS knows from the guard conditions that PROJS5 contains exactly those
tuples satisfying (Dnum = 5) and that WORKS_ON5 contains all tuples to be joined
with PROJS5; hence, subquery T1 can be executed at site 2, and the projected column
Essn can be sent to site 1. Subquery T2 can then be executed at site 1, and the result
can be sent back to site 2, where the final query result is calculated and displayed to
the user. An alternative strategy would be to send the query Q itself to site 1, which
includes all the database tuples, where it would be executed locally and from which
the result would be sent back to site 2. The query optimizer would estimate the costs
of both strategies and would choose the one with the lower cost estimate.

25.6 Overview of Transaction Management 
in Distributed Databases

The global and local transaction management software modules, along with the
concurrency control and recovery manager of a DDBMS, collectively guarantee the
ACID properties of transactions (see Chapter 21). We discuss distributed transac-
tion management in this section and explore concurrency control in Section 25.7.

As can be seen in Figure 25.5, an additional component called the global transac-
tion manager is introduced for supporting distributed transactions. The site where
the transaction originated can temporarily assume the role of global transaction
manager and coordinate the execution of database operations with transaction
managers across multiple sites. Transaction managers export their functionality as
an interface to the application programs. The operations exported by this interface
are similar to those covered in Section 21.2.1, namely BEGIN_TRANSACTION, READ
or WRITE, END_TRANSACTION, COMMIT_TRANSACTION, and ROLLBACK (or
ABORT). The manager stores bookkeeping information related to each transaction,
such as a unique identifier, originating site, name, and so on. For READ operations,
it returns a local copy if valid and available. For WRITE operations, it ensures that
updates are visible across all sites containing copies (replicas) of the data item. For
ABORT operations, the manager ensures that no effects of the transaction are
reflected in any site of the distributed database. For COMMIT operations, it ensures
that the effects of a write are persistently recorded on all databases containing copies
of the data item. Atomic termination (COMMIT/ ABORT) of distributed transactions
is commonly implemented using the two-phase commit protocol. We give more
details of this protocol in the following section.



908 Chapter 25 Distributed Databases

The transaction manager passes to the concurrency controller the database opera-
tion and associated information. The controller is responsible for acquisition and
release of associated locks. If the transaction requires access to a locked resource, it
is delayed until the lock is acquired. Once the lock is acquired, the operation is sent
to the runtime processor, which handles the actual execution of the database opera-
tion. Once the operation is completed, locks are released and the transaction man-
ager is updated with the result of the operation. We discuss commonly used
distributed concurrency methods in Section 25.7.

25.6.1 Two-Phase Commit Protocol
In Section 23.6, we described the two-phase commit protocol (2PC), which requires a
global recovery manager, or coordinator, to maintain information needed for
recovery, in addition to the local recovery managers and the information they main-
tain (log, tables) The two-phase commit protocol has certain drawbacks that led to
the development of the three-phase commit protocol, which we discuss next.

25.6.2 Three-Phase Commit Protocol
The biggest drawback of 2PC is that it is a blocking protocol. Failure of the coordi-
nator blocks all participating sites, causing them to wait until the coordinator recov-
ers. This can cause performance degradation, especially if participants are holding
locks to shared resources. Another problematic scenario is when both the coordina-
tor and a participant that has committed crash together. In the two-phase commit
protocol, a participant has no way to ensure that all participants got the commit
message in the second phase. Hence once a decision to commit has been made by
the coordinator in the first phase, participants will commit their transactions in the
second phase independent of receipt of a global commit message by other partici-
pants. Thus, in the situation that both the coordinator and a committed participant
crash together, the result of the transaction becomes uncertain or nondeterministic.
Since the transaction has already been committed by one participant, it cannot be
aborted on recovery by the coordinator. Also, the transaction cannot be optimisti-
cally committed on recovery since the original vote of the coordinator may have
been to abort.

These problems are solved by the three-phase commit (3PC) protocol, which essen-
tially divides the second commit phase into two subphases called prepare-to-
commit and commit. The prepare-to-commit phase is used to communicate the
result of the vote phase to all participants. If all participants vote yes, then the coordi-
nator instructs them to move into the prepare-to-commit state. The commit subphase
is identical to its two-phase counterpart. Now, if the coordinator crashes during this
subphase, another participant can see the transaction through to completion. It can
simply ask a crashed participant if it received a prepare-to-commit message. If it did
not, then it safely assumes to abort. Thus the state of the protocol can be recovered
irrespective of which participant crashes. Also, by limiting the time required for a
transaction to commit or abort to a maximum time-out period, the protocol ensures
that a transaction attempting to commit via 3PC releases locks on time-out.
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The main idea is to limit the wait time for participants who have committed and are
waiting for a global commit or abort from the coordinator. When a participant
receives a precommit message, it knows that the rest of the participants have voted
to commit. If a precommit message has not been received, then the participant will
abort and release all locks.

25.6.3 Operating System Support 
for Transaction Management

The following are the main benefits of operating system (OS)-supported transac-
tion management:

■ Typically, DBMSs use their own semaphores9 to guarantee mutually exclu-
sive access to shared resources. Since these semaphores are implemented in
userspace at the level of the DBMS application software, the OS has no
knowledge about them. Hence if the OS deactivates a DBMS process holding
a lock, other DBMS processes wanting this lock resource get queued. Such a
situation can cause serious performance degradation. OS-level knowledge of
semaphores can help eliminate such situations.

■ Specialized hardware support for locking can be exploited to reduce associ-
ated costs. This can be of great importance, since locking is one of the most
common DBMS operations.

■ Providing a set of common transaction support operations though the ker-
nel allows application developers to focus on adding new features to their
products as opposed to reimplementing the common functionality for each
application. For example, if different DDBMSs are to coexist on the same
machine and they chose the two-phase commit protocol, then it is more
beneficial to have this protocol implemented as part of the kernel so that 
the DDBMS developers can focus more on adding new features to their 
products.

25.7 Overview of Concurrency Control 
and Recovery in Distributed Databases

For concurrency control and recovery purposes, numerous problems arise in a dis-
tributed DBMS environment that are not encountered in a centralized DBMS envi-
ronment. These include the following:

■ Dealing with multiple copies of the data items. The concurrency control
method is responsible for maintaining consistency among these copies. The
recovery method is responsible for making a copy consistent with other
copies if the site on which the copy is stored fails and recovers later.

9Semaphores are data structures used for synchronized and exclusive access to shared resources for
preventing race conditions in a parallel computing system.
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■ Failure of individual sites. The DDBMS should continue to operate with its
running sites, if possible, when one or more individual sites fail. When a site
recovers, its local database must be brought up-to-date with the rest of the
sites before it rejoins the system.

■ Failure of communication links. The system must be able to deal with the
failure of one or more of the communication links that connect the sites. An
extreme case of this problem is that network partitioning may occur. This
breaks up the sites into two or more partitions, where the sites within each
partition can communicate only with one another and not with sites in other
partitions.

■ Distributed commit. Problems can arise with committing a transaction that
is accessing databases stored on multiple sites if some sites fail during the
commit process. The two-phase commit protocol (see Section 23.6) is often
used to deal with this problem.

■ Distributed deadlock. Deadlock may occur among several sites, so tech-
niques for dealing with deadlocks must be extended to take this into
account.

Distributed concurrency control and recovery techniques must deal with these and
other problems. In the following subsections, we review some of the techniques that
have been suggested to deal with recovery and concurrency control in DDBMSs.

25.7.1 Distributed Concurrency Control Based 
on a Distinguished Copy of a Data Item

To deal with replicated data items in a distributed database, a number of concur-
rency control methods have been proposed that extend the concurrency control
techniques for centralized databases. We discuss these techniques in the context of
extending centralized locking. Similar extensions apply to other concurrency control
techniques. The idea is to designate a particular copy of each data item as a
distinguished copy. The locks for this data item are associated with the distin-
guished copy, and all locking and unlocking requests are sent to the site that contains
that copy.

A number of different methods are based on this idea, but they differ in their
method of choosing the distinguished copies. In the primary site technique, all dis-
tinguished copies are kept at the same site. A modification of this approach is the
primary site with a backup site. Another approach is the primary copy method,
where the distinguished copies of the various data items can be stored in different
sites. A site that includes a distinguished copy of a data item basically acts as the
coordinator site for concurrency control on that item. We discuss these techniques
next.

Primary Site Technique. In this method a single primary site is designated to be
the coordinator site for all database items. Hence, all locks are kept at that site, and
all requests for locking or unlocking are sent there. This method is thus an extension
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of the centralized locking approach. For example, if all transactions follow the two-
phase locking protocol, serializability is guaranteed. The advantage of this approach
is that it is a simple extension of the centralized approach and thus is not overly
complex. However, it has certain inherent disadvantages. One is that all locking
requests are sent to a single site, possibly overloading that site and causing a system
bottleneck. A second disadvantage is that failure of the primary site paralyzes the
system, since all locking information is kept at that site. This can limit system relia-
bility and availability.

Although all locks are accessed at the primary site, the items themselves can be
accessed at any site at which they reside. For example, once a transaction obtains a
Read_lock on a data item from the primary site, it can access any copy of that data
item. However, once a transaction obtains a Write_lock and updates a data item, the
DDBMS is responsible for updating all copies of the data item before releasing the
lock.

Primary Site with Backup Site. This approach addresses the second disadvantage
of the primary site method by designating a second site to be a backup site. All lock-
ing information is maintained at both the primary and the backup sites. In case of
primary site failure, the backup site takes over as the primary site, and a new backup
site is chosen. This simplifies the process of recovery from failure of the primary site,
since the backup site takes over and processing can resume after a new backup site is
chosen and the lock status information is copied to that site. It slows down the
process of acquiring locks, however, because all lock requests and granting of locks
must be recorded at both the primary and the backup sites before a response is sent to
the requesting transaction. The problem of the primary and backup sites becoming
overloaded with requests and slowing down the system remains undiminished.

Primary Copy Technique. This method attempts to distribute the load of lock
coordination among various sites by having the distinguished copies of different
data items stored at different sites. Failure of one site affects any transactions that are
accessing locks on items whose primary copies reside at that site, but other transac-
tions are not affected. This method can also use backup sites to enhance reliability
and availability.

Choosing a New Coordinator Site in Case of Failure. Whenever a coordina-
tor site fails in any of the preceding techniques, the sites that are still running must
choose a new coordinator. In the case of the primary site approach with no backup
site, all executing transactions must be aborted and restarted in a tedious recovery
process. Part of the recovery process involves choosing a new primary site and creat-
ing a lock manager process and a record of all lock information at that site. For
methods that use backup sites, transaction processing is suspended while the
backup site is designated as the new primary site and a new backup site is chosen
and is sent copies of all the locking information from the new primary site.

If a backup site X is about to become the new primary site, X can choose the new
backup site from among the system’s running sites. However, if no backup site
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existed, or if both the primary and the backup sites are down, a process called
election can be used to choose the new coordinator site. In this process, any site Y
that attempts to communicate with the coordinator site repeatedly and fails to do so
can assume that the coordinator is down and can start the election process by send-
ing a message to all running sites proposing that Y become the new coordinator. As
soon as Y receives a majority of yes votes, Y can declare that it is the new coordina-
tor. The election algorithm itself is quite complex, but this is the main idea behind
the election method. The algorithm also resolves any attempt by two or more sites
to become coordinator at the same time. The references in the Selected Bibliography
at the end of this chapter discuss the process in detail.

25.7.2 Distributed Concurrency Control Based on Voting
The concurrency control methods for replicated items discussed earlier all use the
idea of a distinguished copy that maintains the locks for that item. In the voting
method, there is no distinguished copy; rather, a lock request is sent to all sites that
includes a copy of the data item. Each copy maintains its own lock and can grant or
deny the request for it. If a transaction that requests a lock is granted that lock by a
majority of the copies, it holds the lock and informs all copies that it has been
granted the lock. If a transaction does not receive a majority of votes granting it a
lock within a certain time-out period, it cancels its request and informs all sites of
the cancellation.

The voting method is considered a truly distributed concurrency control method,
since the responsibility for a decision resides with all the sites involved. Simulation
studies have shown that voting has higher message traffic among sites than do the
distinguished copy methods. If the algorithm takes into account possible site fail-
ures during the voting process, it becomes extremely complex.

25.7.3 Distributed Recovery
The recovery process in distributed databases is quite involved. We give only a very
brief idea of some of the issues here. In some cases it is quite difficult even to deter-
mine whether a site is down without exchanging numerous messages with other
sites. For example, suppose that site X sends a message to site Y and expects a
response from Y but does not receive it. There are several possible explanations:

■ The message was not delivered to Y because of communication failure.

■ Site Y is down and could not respond.

■ Site Y is running and sent a response, but the response was not delivered.

Without additional information or the sending of additional messages, it is difficult
to determine what actually happened.

Another problem with distributed recovery is distributed commit. When a transac-
tion is updating data at several sites, it cannot commit until it is sure that the effect
of the transaction on every site cannot be lost. This means that every site must first
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have recorded the local effects of the transactions permanently in the local site log
on disk. The two-phase commit protocol is often used to ensure the correctness of
distributed commit (see Section 23.6).

25.8 Distributed Catalog Management
Efficient catalog management in distributed databases is critical to ensure satisfac-
tory performance related to site autonomy, view management, and data distribution
and replication. Catalogs are databases themselves containing metadata about the
distributed database system.

Three popular management schemes for distributed catalogs are centralized cata-
logs, fully replicated catalogs, and partitioned catalogs. The choice of the scheme
depends on the database itself as well as the access patterns of the applications to the
underlying data.

Centralized Catalogs. In this scheme, the entire catalog is stored in one single
site. Owing to its central nature, it is easy to implement. On the other hand, the
advantages of reliability, availability, autonomy, and distribution of processing load
are adversely impacted. For read operations from noncentral sites, the requested
catalog data is locked at the central site and is then sent to the requesting site. On
completion of the read operation, an acknowledgement is sent to the central site,
which in turn unlocks this data. All update operations must be processed through
the central site. This can quickly become a performance bottleneck for write-
intensive applications.

Fully Replicated Catalogs. In this scheme, identical copies of the complete cata-
log are present at each site. This scheme facilitates faster reads by allowing them to
be answered locally. However, all updates must be broadcast to all sites. Updates are
treated as transactions and a centralized two-phase commit scheme is employed to
ensure catalog consitency. As with the centralized scheme, write-intensive applica-
tions may cause increased network traffic due to the broadcast associated with the
writes.

Partially Replicated Catalogs. The centralized and fully replicated schemes
restrict site autonomy since they must ensure a consistent global view of the catalog.
Under the partially replicated scheme, each site maintains complete catalog infor-
mation on data stored locally at that site. Each site is also permitted to cache entries
retrieved from remote sites. However, there are no guarantees that these cached
copies will be the most recent and updated. The system tracks catalog entries for
sites where the object was created and for sites that contain copies of this object. Any
changes to copies are propagated immediately to the original (birth) site. Retrieving
updated copies to replace stale data may be delayed until an access to this data
occurs. In general, fragments of relations across sites should be uniquely accessible.
Also, to ensure data distribution transparency, users should be allowed to create
synonyms for remote objects and use these synonyms for subsequent referrals.
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25.9 Current Trends in Distributed Databases
Current trends in distributed data management are centered on the Internet, in
which petabytes of data can be managed in a scalable, dynamic, and reliable fashion.
Two important areas in this direction are cloud computing and peer-to-peer data-
bases.

25.9.1 Cloud Computing
Cloud computing is the paradigm of offering computer infrastructure, platforms,
and software as services over the Internet. It offers significant economic advantages
by limiting both up-front capital investments toward computer infrastructure as
well as total cost of ownership. It has introduced a new challenge of managing
petabytes of data in a scalable fashion. Traditional database systems for managing
enterprise data proved to be inadequate in handling this challenge, which has
resulted in a major architectural revision. The Claremont report10 by a group of
senior database researchers envisions that future research in cloud computing will
result in the emergence of new data management architectures and the interplay of
structured and unstructured data as well as other developments.

Performance costs associated with partial failures and global synchronization were
key performance bottlenecks of traditional database solutions. The key insight is
that the hash-value nature of the underlying datasets used by these organizations
lends itself naturally to partitioning. For instance, search queries essentially involve
a recursive process of mapping keywords to a set of related documents, which can
benefit from such a partitioning. Also, the partitions can be treated independently,
thereby eliminating the need for a coordinated commit. Another problem with tra-
ditional DDBMSs is the lack of support for efficient dynamic partitioning of data,
which limited scalability and resource utilization. Traditional systems treated sys-
tem metadata and application data alike, with the system data requiring strict con-
sistency and availability guarantees. But application data has variable requirements
on these characteristics, depending on its nature. For example, while a search engine
can afford weaker consistency guarantees, an online text editor like Google Docs,
which allows concurrent users, has strict consistency requirements.

The metadata of a distributed database system should be decoupled from its actual
data in order to ensure scalability. This decoupling can be used to develop innova-
tive solutions to manage the actual data by exploiting their inherent suitability to
partitioning and using traditional database solutions to manage critical system
metadata. Since metadata is only a fraction of the total data set, it does not prove to
be a performance bottleneck. Single object semantics of these implementations
enables higher tolerance to nonavailability of certain sections of data. Access to data
is typically by a single object in an atomic fashion. Hence, transaction support to
such data is not as stringent as for traditional databases.11 There is a varied set of

10“The Claremont Report on Database Research” is available at http://db.cs.berkeley.edu/claremont/
claremontreport08.pdf.
11Readers may refer to the work done by Das et al. (2008) for further details.

http://db.cs.berkeley.edu/claremont/claremontreport08.pdf
http://db.cs.berkeley.edu/claremont/claremontreport08.pdf
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cloud services available today, including application services (salesforce.com), stor-
age services (Amazon Simple Storage Service, or Amazon S3), compute services
(Google App Engine, Amazon Elastic Compute Cloud—Amazon EC2), and data
services (Amazon SimpleDB, Microsoft SQL Server Data Services, Google’s
Datastore). More and more data-centric applications are expected to leverage data
services in the cloud. While most current cloud services are data-analysis intensive,
it is expected that business logic will eventually be migrated to the cloud. The key
challenge in this migration would be to ensure the scalability advantages for multi-
ple object semantics inherent to business logic. For a detailed treatment of cloud
computing, refer to the relevant bibliographic references in this chapter’s Selected
Bibliography.

25.9.2 Peer-to-Peer Database Systems
A peer-to-peer database system (PDBS) aims to integrate advantages of P2P (peer-
to-peer) computing, such as scalability, attack resilience, and self-organization, with
the features of decentralized data management. Nodes are autonomous and are
linked only to a small number of peers individually. It is permissible for a node to
behave purely as a collection of files without offering a complete set of traditional
DBMS functionality. While FDBS and MDBS mandate the existence of mappings
between local and global federated schemas, PDBSs attempt to avoid a global
schema by providing mappings between pairs of information sources. In PDBS,
each peer potentially models semantically related data in a manner different from
other peers, and hence the task of constructing a central mediated schema can be
very challenging. PDBSs aim to decentralize data sharing. Each peer has a schema
associated with its domain-specific stored data. The PDBS constructs a semantic
path12 of mappings between peer schemas. Using this path, a peer to which a query
has been submitted can obtain information from any relevant peer connected
through this path. In multidatabase systems, a separate global query processor is
used, whereas in a P2P system a query is shipped from one peer to another until it is
processed completely. A query submitted to a node may be forwarded to others
based on the mapping graph of semantic paths. Edutella and Piazza are examples of
PDBSs. Details of these systems can be found from the sources mentioned in this
chapter’s Selected Bibliography.

25.10 Distributed Databases in Oracle13

Oracle provides support for homogeneous, heterogeneous, and client server archi-
tectures of distributed databases. In a homogeneous architecture, a minimum of
two Oracle databases reside on at least one machine. Although the location and
platform of the databases are transparent to client applications, they would need to

12A semantic path describes the higher-level relationship between two domains that are dissimilar but
not unrelated. 
13The discussion is based on available documentation at http://docs.oracle.com. 

http://docs.oracle.com
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distinguish between local and remote objects semantically. Using synonyms, this
need can be overcome wherein users can access the remote objects with the same
syntax as local objects. Different versions of DBMSs can be used, although it must
be noted that Oracle offers backward compatibility but not forward compatibility
between its versions. For example, it is possible that some of the SQL extensions that
were incorporated into Oracle 11i may not be understood by Oracle 9.

In a heterogeneous architecture, at least one of the databases in the network is a
non-Oracle system. The Oracle database local to the application hides the underly-
ing heterogeneity and offers the view of a single local, underlying Oracle database.
Connectivity is handled by use of an ODBC- or OLE-DB-compliant protocol or by
Oracle’s Heterogeneous Services and Transparent Gateway agent components. A
discussion of the Heterogeneous Services and Transparent Gateway agents is
beyond the scope of this book, and the reader is advised to consult the online Oracle
documentation.

In the client-server architecture, the Oracle database system is divided into two
parts: a front end as the client portion, and a back end as the server portion. The
client portion is the front-end database application that interacts with the user. The
client has no data access responsibility and merely handles the requesting, process-
ing, and presentation of data managed by the server. The server portion runs Oracle
and handles the functions related to concurrent shared access. It accepts SQL and
PL/SQL statements originating from client applications, processes them, and sends
the results back to the client. Oracle client-server applications provide location
transparency by making the location of data transparent to users; several features
like views, synonyms, and procedures contribute to this. Global naming is achieved
by using <TABLE_NAME@DATABASE_NAME> to refer to tables uniquely.

Oracle uses a two-phase commit protocol to deal with concurrent distributed trans-
actions. The COMMIT statement triggers the two-phase commit mechanism. The
RECO (recoverer) background process automatically resolves the outcome of those
distributed transactions in which the commit was interrupted. The RECO of each
local Oracle server automatically commits or rolls back any in-doubt distributed
transactions consistently on all involved nodes. For long-term failures, Oracle
allows each local DBA to manually commit or roll back any in-doubt transactions
and free up resources. Global consistency can be maintained by restoring the data-
base at each site to a predetermined fixed point in the past.

Oracle’s distributed database architecture is shown in Figure 25.12. A node in a dis-
tributed database system can act as a client, as a server, or both, depending on the sit-
uation. The figure shows two sites where databases called HQ (headquarters) and
Sales are kept. For example, in the application shown running at the headquarters,
for an SQL statement issued against local data (for example, DELETE FROM DEPT ...),
the HQ computer acts as a server, whereas for a statement against remote data (for
example, INSERT INTO EMP@SALES), the HQ computer acts as a client.

Communication in such a distributed heterogeneous environment is facilitated
through Oracle Net Services, which supports standard network protocols and APIs.
Under Oracle’s client-server implementation of distributed databases, Net Services
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Figure 25.12
Oracle distributed database system.

Source: From Oracle (2008). Copyright ©
Oracle Corporation 2008. All rights reserved.

is responsible for establishing and managing connections between a client applica-
tion and database server. It is present in each node on the network running an
Oracle client application, database server, or both. It packages SQL statements into
one of the many communication protocols to facilitate client-to-server communi-
cation and then packages the results back similarly to the client. The support offered
by Net Services to heterogeneity refers to platform specifications only and not the
database software. Support for DBMSs other than Oracle is through Oracle’s
Heterogeneous Services and Transparent Gateway. Each database has a unique
global name provided by a hierarchical arrangement of network domain names that
is prefixed to the database name to make it unique.

Oracle supports database links that define a one-way communication path from
one Oracle database to another. For example,

CREATE DATABASE LINK sales.us.americas;
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establishes a connection to the sales database in Figure 25.12 under the network
domain us that comes under domain americas. Using links, a user can access a
remote object on another database subject to ownership rights without the need for
being a user on the remote database.

Data in an Oracle DDBS can be replicated using snapshots or replicated master
tables. Replication is provided at the following levels:

■ Basic replication. Replicas of tables are managed for read-only access. For
updates, data must be accessed at a single primary site.

■ Advanced (symmetric) replication. This extends beyond basic replication
by allowing applications to update table replicas throughout a replicated
DDBS. Data can be read and updated at any site. This requires additional
software called Oracle’s advanced replication option. A snapshot generates a
copy of a part of the table by means of a query called the snapshot defining
query. A simple snapshot definition looks like this:

CREATE SNAPSHOT SALES_ORDERS AS
SELECT * FROM SALES_ORDERS@hq.us.americas;

Oracle groups snapshots into refresh groups. By specifying a refresh interval, the
snapshot is automatically refreshed periodically at that interval by up to ten
Snapshot Refresh Processes (SNPs). If the defining query of a snapshot contains a
distinct or aggregate function, a GROUP BY or CONNECT BY clause, or join or set
operations, the snapshot is termed a complex snapshot and requires additional
processing. Oracle (up to version 7.3) also supports ROWID snapshots that are
based on physical row identifiers of rows in the master table.

Heterogeneous Databases in Oracle. In a heterogeneous DDBS, at least one
database is a non-Oracle system. Oracle Open Gateways provides access to a non-
Oracle database from an Oracle server, which uses a database link to access data or
to execute remote procedures in the non-Oracle system. The Open Gateways feature
includes the following:

■ Distributed transactions. Under the two-phase commit mechanism, trans-
actions may span Oracle and non-Oracle systems.

■ Transparent SQL access. SQL statements issued by an application are trans-
parently transformed into SQL statements understood by the non-Oracle
system.

■ Pass-through SQL and stored procedures. An application can directly
access a non-Oracle system using that system’s version of SQL. Stored proce-
dures in a non-Oracle SQL-based system are treated as if they were PL/SQL
remote procedures.

■ Global query optimization. Cardinality information, indexes, and so on at
the non-Oracle system are accounted for by the Oracle server query opti-
mizer to perform global query optimization.

■ Procedural access. Procedural systems like messaging or queuing systems
are accessed by the Oracle server using PL/SQL remote procedure calls.
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In addition to the above, data dictionary references are translated to make the non-
Oracle data dictionary appear as a part of the Oracle server’s dictionary. Character
set translations are done between national language character sets to connect multi-
lingual databases.

From a security perspective, Oracle recommends that if a query originates at site A
and accesses sites B, C, and D, then the auditing of links should be done in the data-
base at site A only. This is because the remote databases cannot distinguish whether
a successful connection request and following SQL statements are coming from
another server or a locally connected client.

25.10.1 Directory Services
A concept closely related with distributed enterprise systems is online directories.
Online directories are essentially a structured organization of metadata needed for
management functions. They can represent information about a variety of sources
ranging from security credentials, shared network resources, and database catalog.
Lightweight Directory Access Protocol (LDAP) is an industry standard protocol
for directory services. LDAP enables the use of a partitioned Directory
Information Tree (DIT) across multiple LDAP servers, which in turn can return
references to other servers as a result of a directory query. Online directories and
LDAP are particularly important in distributed databases, wherein access of meta-
data related to transparencies discussed in Section 25.1 must be scalable, secure, and
highly available.

Oracle supports LDAP Version 3 and online directories through Oracle Internet
Directory, a general-purpose directory service for fast access and centralized man-
agement of metadata pertaining to distributed network resources and users. It runs
as an application on an Oracle database and communicates with the database
through Oracle Net Services. It also provides password-based, anonymous, and 
certificate-based user authentication using SSL Version 3.

Figure 25.13 illustrates the architecture of the Oracle Internet Directory. The main
components are:

■ Oracle directory server. Handles client requests and updates for informa-
tion pertaining to people and resources.

■ Oracle directory replication server. Stores a copy of the LDAP data from
Oracle directory servers as a backup.

■ Directory administrator: Supports both GUI-based and command line-
based interfaces for directory administration.

25.11 Summary
In this chapter we provided an introduction to distributed databases. This is a very
broad topic, and we discussed only some of the basic techniques used with distrib-
uted databases. First we discussed the reasons for distribution and the potential
advantages of distributed databases over centralized systems. Then the concept of
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distribution transparency and the related concepts of fragmentation transparency
and replication transparency were defined. We categorized DDBMSs by using crite-
ria such as the degree of homogeneity of software modules and the degree of local
autonomy. We distinguished between parallel and distributed system architectures
and then introduced the generic architecture of distributed databases from both a
component as well as a schematic architectural perspective. The issues of federated
database management were then discussed in some detail, focusing on the needs of
supporting various types of autonomies and dealing with semantic heterogeneity.
We also reviewed the client-server architecture concepts and related them to distrib-
uted databases. We discussed the design issues related to data fragmentation, repli-
cation, and distribution, and we distinguished between horizontal and vertical
fragments of relations. The use of data replication to improve system reliability and
availability was then discussed. We illustrated some of the techniques used in dis-
tributed query processing and discussed the cost of communication among sites,
which is considered a major factor in distributed query optimization. The different
techniques for executing joins were compared and we then presented the semijoin
technique for joining relations that reside on different sites. Then we discussed
transaction management, including different commit protocols and operating sys-
tem support for transaction management. We briefly discussed the concurrency
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control and recovery techniques used in DDBMSs, and then reviewed some of the
additional problems that must be dealt with in a distributed environment that do
not appear in a centralized environment. We reviewed catalog management in dis-
tributed databases and summarized their relative advantages and disadvantages. We
then introduced Cloud Computing and Peer to Peer Database Systems as new focus
areas in DDBs in response to the need of managing petabytes of information acces-
sible over the Internet today.

We described some of the facilities in Oracle to support distributed databases. We
also discussed online directories and the LDAP protocol in brief.

Review Questions
25.1. What are the main reasons for and potential advantages of distributed data-

bases?

25.2. What additional functions does a DDBMS have over a centralized DBMS?

25.3. Discuss what is meant by the following terms: degree of homogeneity of a
DDBMS, degree of local autonomy of a DDBMS, federated DBMS, distribution
transparency, fragmentation transparency, replication transparency,
multidatabase system.

25.4. Discuss the architecture of a DDBMS. Within the context of a centralized
DBMS, briefly explain new components introduced by the distribution of
data.

25.5. What are the main software modules of a DDBMS? Discuss the main func-
tions of each of these modules in the context of the client-server architec-
ture.

25.6. Compare the two-tier and three-tier client-server architectures.

25.7. What is a fragment of a relation? What are the main types of fragments? Why
is fragmentation a useful concept in distributed database design?

25.8. Why is data replication useful in DDBMSs? What typical units of data are
replicated?

25.9. What is meant by data allocation in distributed database design? What typi-
cal units of data are distributed over sites?

25.10. How is a horizontal partitioning of a relation specified? How can a relation
be put back together from a complete horizontal partitioning?

25.11. How is a vertical partitioning of a relation specified? How can a relation be
put back together from a complete vertical partitioning?

25.12. Discuss the naming problem in distributed databases.

25.13. What are the different stages of processing a query in a DDBMS?

25.14. Discuss the different techniques for executing an equijoin of two files located
at different sites. What main factors affect the cost of data transfer?
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25.15. Discuss the semijoin method for executing an equijoin of two files located at
different sites. Under what conditions is an equijoin strategy efficient?

25.16. Discuss the factors that affect query decomposition. How are guard condi-
tions and attribute lists of fragments used during the query decomposition
process?

25.17. How is the decomposition of an update request different from the decompo-
sition of a query? How are guard conditions and attribute lists of fragments
used during the decomposition of an update request?

25.18. List the support offered by operating systems to a DDBMS and also their
benefits.

25.19. Discuss the factors that do not appear in centralized systems that affect con-
currency control and recovery in distributed systems.

25.20. Discuss the two-phase commit protocol used for transaction management in
a DDBMS. List its limitations and explain how they are overcome using the
three-phase commit protocol.

25.21. Compare the primary site method with the primary copy method for dis-
tributed concurrency control. How does the use of backup sites affect each?

25.22. When are voting and elections used in distributed databases?

25.23. Discuss catalog management in distributed databases.

25.24. What are the main challenges facing a traditional DDBMS in the context of
today’s Internet applications? How does cloud computing attempt to address
them?

25.25. Discuss briefly the support offered by Oracle for homogeneous, heteroge-
neous, and client-server based distributed database architectures.

25.26. Discuss briefly online directories, their management, and their role in dis-
tributed databases.

Exercises
25.27. Consider the data distribution of the COMPANY database, where the frag-

ments at sites 2 and 3 are as shown in Figure 25.9 and the fragments at site 1
are as shown in Figure 3.6. For each of the following queries, show at least
two strategies of decomposing and executing the query. Under what condi-
tions would each of your strategies work well?

a. For each employee in department 5, retrieve the employee name and the
names of the employee’s dependents.

b. Print the names of all employees who work in department 5 but who
work on some project not controlled by department 5.
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25.28. Consider the following relations:

BOOKS(Book#, Primary_author, Topic, Total_stock, $price)
BOOKSTORE(Store#, City, State, Zip, Inventory_value)
STOCK(Store#, Book#, Qty)

Total_stock is the total number of books in stock and Inventory_value is the
total inventory value for the store in dollars.

a. Give an example of two simple predicates that would be meaningful for
the BOOKSTORE relation for horizontal partitioning.

b. How would a derived horizontal partitioning of STOCK be defined based
on the partitioning of BOOKSTORE?

c. Show predicates by which BOOKS may be horizontally partitioned by
topic.

d. Show how the STOCK may be further partitioned from the partitions in
(b) by adding the predicates in (c).

25.29. Consider a distributed database for a bookstore chain called National Books
with three sites called EAST, MIDDLE, and WEST. The relation schemas are
given in Exercise 25.28. Consider that BOOKS are fragmented by $price
amounts into:

B1: BOOK1: $price up to $20
B2: BOOK2: $price from $20.01 to $50
B3: BOOK3: $price from $50.01 to $100
B4: BOOK4: $price $100.01 and above

Similarly, BOOK_STORES are divided by ZIP Codes into:

S1: EAST: Zip up to 35000
S2: MIDDLE: Zip 35001 to 70000
S3: WEST: Zip 70001 to 99999

Assume that STOCK is a derived fragment based on BOOKSTORE only.

a. Consider the query:

SELECT Book#, Total_stock
FROM Books
WHERE $price > 15 AND $price < 55;

Assume that fragments of BOOKSTORE are nonreplicated and assigned
based on region. Assume further that BOOKS are allocated as:

EAST: B1, B4
MIDDLE: B1, B2
WEST: B1, B2, B3, B4

Assuming the query was submitted in EAST, what remote subqueries does
it generate? (Write in SQL.)

b. If the price of Book#= 1234 is updated from $45 to $55 at site MIDDLE,
what updates does that generate? Write in English and then in SQL.
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c. Give a sample query issued at WEST that will generate a subquery for
MIDDLE.

d. Write a query involving selection and projection on the above relations
and show two possible query trees that denote different ways of execu-
tion.

25.30. Consider that you have been asked to propose a database architecture in a
large organization (General Motors, for example) to consolidate all data
including legacy databases (from hierarchical and network models, which
are explained in the Web Appendices D and E; no specific knowledge of these
models is needed) as well as relational databases, which are geographically
distributed so that global applications can be supported. Assume that alter-
native one is to keep all databases as they are, while alternative two is to first
convert them to relational and then support the applications over a distrib-
uted integrated database.

a. Draw two schematic diagrams for the above alternatives showing the link-
ages among appropriate schemas. For alternative one, choose the
approach of providing export schemas for each database and construct-
ing unified schemas for each application.

b. List the steps that you would have to go through under each alternative
from the present situation until global applications are viable.

c. Compare these from the issues of:
i. design time considerations

ii. runtime considerations
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Enhanced Data Models 
for Advanced Applications

As the use of database systems has grown, users have
demanded additional functionality from these

software packages, with the purpose of making it easier to implement more
advanced and complex user applications. Object-oriented databases and object-
relational systems do provide features that allow users to extend their systems by
specifying additional abstract data types for each application. However, it is quite
useful to identify certain common features for some of these advanced applications
and to create models that can represent them. Additionally, specialized storage
structures and indexing methods can be implemented to improve the performance
of these common features. Then the features can be implemented as abstract data
types or class libraries and purchased separately from the basic DBMS software
package. The term data blade has been used in Informix and cartridge in Oracle to
refer to such optional submodules that can be included in a DBMS package. Users
can utilize these features directly if they are suitable for their applications, without
having to reinvent, reimplement, and reprogram such common features.

This chapter introduces database concepts for some of the common features that
are needed by advanced applications and are being used widely. We will cover active
rules that are used in active database applications, temporal concepts that are used in
temporal database applications, and, briefly, some of the issues involving spatial
databases and multimedia databases. We will also discuss deductive databases. It is
important to note that each of these topics is very broad, and we give only a brief
introduction to each. In fact, each of these areas can serve as the sole topic of a com-
plete book.

In Section 26.1 we introduce the topic of active databases, which provide additional
functionality for specifying active rules. These rules can be automatically triggered

26chapter 26
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by events that occur, such as database updates or certain times being reached, and
can initiate certain actions that have been specified in the rule declaration to occur
if certain conditions are met. Many commercial packages include some of the func-
tionality provided by active databases in the form of triggers. Triggers are now part
of the SQL-99 and later standards.

In Section 26.2 we introduce the concepts of temporal databases, which permit the
database system to store a history of changes, and allow users to query both current
and past states of the database. Some temporal database models also allow users to
store future expected information, such as planned schedules. It is important to
note that many database applications are temporal, but they are often implemented
without having much temporal support from the DBMS package—that is, the tem-
poral concepts are implemented in the application programs that access the data-
base.

Section 26.3 gives a brief overview of spatial database concepts. We discuss types of
spatial data, different kinds of spatial analyses, operations on spatial data, types of
spatial queries, spatial data indexing, spatial data mining, and applications of spatial
databases.

Section 26.4 is devoted to multimedia database concepts. Multimedia databases
provide features that allow users to store and query different types of multimedia
information, which includes images (such as pictures and drawings), video clips
(such as movies, newsreels, and home videos), audio clips (such as songs, phone
messages, and speeches), and documents (such as books and articles). We discuss
automatic analysis of images, object recognition in images, and semantic tagging of
images,

In Section 26.5 we discuss deductive databases,1 an area that is at the intersection of
databases, logic, and artificial intelligence or knowledge bases. A deductive data-
base system includes capabilities to define (deductive) rules, which can deduce or
infer additional information from the facts that are stored in a database. Because
part of the theoretical foundation for some deductive database systems is mathe-
matical logic, such rules are often referred to as logic databases. Other types of sys-
tems, referred to as expert database systems or knowledge-based systems, also
incorporate reasoning and inferencing capabilities; such systems use techniques
that were developed in the field of artificial intelligence, including semantic 
networks, frames, production systems, or rules for capturing domain-specific
knowledge. Section 26.6 summarizes the chapter.

Readers may choose to peruse the particular topics they are interested in, as the sec-
tions in this chapter are practically independent of one another.

1Section 26.5 is a summary of Deductive Databases. The full chapter from the third edition, which pro-
vides a more comprehensive introduction, is available on the book’s Web site.
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26.1 Active Database Concepts and Triggers
Rules that specify actions that are automatically triggered by certain events have
been considered important enhancements to database systems for quite some time.
In fact, the concept of triggers—a technique for specifying certain types of active
rules—has existed in early versions of the SQL specification for relational databases
and triggers are now part of the SQL-99 and later standards. Commercial relational
DBMSs—such as Oracle, DB2, and Microsoft SQLServer—have various versions of
triggers available. However, much research into what a general model for active
databases should look like has been done since the early models of triggers were
proposed. In Section 26.1.1 we will present the general concepts that have been pro-
posed for specifying rules for active databases. We will use the syntax of the Oracle
commercial relational DBMS to illustrate these concepts with specific examples,
since Oracle triggers are close to the way rules are specified in the SQL standard.
Section 26.1.2 will discuss some general design and implementation issues for active
databases. We give examples of how active databases are implemented in the STAR-
BURST experimental DBMS in Section 26.1.3, since STARBURST provides for
many of the concepts of generalized active databases within its framework. Section
26.1.4 discusses possible applications of active databases. Finally, Section 26.1.5
describes how triggers are declared in the SQL-99 standard.

26.1.1 Generalized Model for Active Databases 
and Oracle Triggers

The model that has been used to specify active database rules is referred to as the
Event-Condition-Action (ECA) model. A rule in the ECA model has three compo-
nents:

1. The event(s) that triggers the rule: These events are usually database update
operations that are explicitly applied to the database. However, in the general
model, they could also be temporal events2 or other kinds of external events.

2. The condition that determines whether the rule action should be executed:
Once the triggering event has occurred, an optional condition may be evalu-
ated. If no condition is specified, the action will be executed once the event
occurs. If a condition is specified, it is first evaluated, and only if it evaluates
to true will the rule action be executed.

3. The action to be taken: The action is usually a sequence of SQL statements,
but it could also be a database transaction or an external program that will
be automatically executed.

Let us consider some examples to illustrate these concepts. The examples are based
on a much simplified variation of the COMPANY database application from Figure
3.5 and is shown in Figure 26.1, with each employee having a name (Name), Social

2An example would be a temporal event specified as a periodic time, such as: Trigger this rule every day
at 5:30 A.M.
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Name Ssn Salary Dno Supervisor_ssn

EMPLOYEE

Dname Dno Total_sal Manager_ssn

DEPARTMENT

Figure 26.1
A simplified COMPANY
database used for active
rule examples.

Security number (Ssn), salary (Salary), department to which they are currently
assigned (Dno, a foreign key to DEPARTMENT), and a direct supervisor
(Supervisor_ssn, a (recursive) foreign key to EMPLOYEE). For this example, we
assume that NULL is allowed for Dno, indicating that an employee may be temporar-
ily unassigned to any department. Each department has a name (Dname), number
(Dno), the total salary of all employees assigned to the department (Total_sal), and a
manager (Manager_ssn, which is a foreign key to EMPLOYEE).

Notice that the Total_sal attribute is really a derived attribute, whose value should be
the sum of the salaries of all employees who are assigned to the particular depart-
ment. Maintaining the correct value of such a derived attribute can be done via an
active rule. First we have to determine the events that may cause a change in the
value of Total_sal, which are as follows:

1. Inserting (one or more) new employee tuples

2. Changing the salary of (one or more) existing employees

3. Changing the assignment of existing employees from one department to
another

4. Deleting (one or more) employee tuples

In the case of event 1, we only need to recompute Total_sal if the new employee is
immediately assigned to a department—that is, if the value of the Dno attribute for
the new employee tuple is not NULL (assuming NULL is allowed for Dno). Hence, this
would be the condition to be checked. A similar condition could be checked for
event 2 (and 4) to determine whether the employee whose salary is changed (or who
is being deleted) is currently assigned to a department. For event 3, we will always
execute an action to maintain the value of Total_sal correctly, so no condition is
needed (the action is always executed).

The action for events 1, 2, and 4 is to automatically update the value of Total_sal for
the employee’s department to reflect the newly inserted, updated, or deleted
employee’s salary. In the case of event 3, a twofold action is needed: one to update
the Total_sal of the employee’s old department and the other to update the Total_sal
of the employee’s new department.

The four active rules (or triggers) R1, R2, R3, and R4—corresponding to the above
situation—can be specified in the notation of the Oracle DBMS as shown in Figure
26.2(a). Let us consider rule R1 to illustrate the syntax of creating triggers in Oracle.
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(a) R1: CREATE TRIGGER Total_sal1
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
WHEN ( NEW.Dno IS NOT NULL )

UPDATE DEPARTMENT
SET Total_sal = Total_sal + NEW.Salary
WHERE Dno = NEW.Dno;

R2: CREATE TRIGGER Total_sal2
AFTER UPDATE OF Salary ON EMPLOYEE
FOR EACH ROW
WHEN ( NEW.Dno IS NOT NULL )

UPDATE DEPARTMENT
SET Total_sal = Total_sal + NEW.Salary – OLD.Salary
WHERE Dno = NEW.Dno;

R3: CREATE TRIGGER Total_sal3
AFTER UPDATE OF Dno ON EMPLOYEE
FOR EACH ROW

BEGIN
UPDATE DEPARTMENT
SET Total_sal = Total_sal + NEW.Salary
WHERE Dno = NEW.Dno;
UPDATE DEPARTMENT
SET Total_sal = Total_sal – OLD.Salary
WHERE Dno = OLD.Dno;
END;

R4: CREATE TRIGGER Total_sal4
AFTER DELETE ON EMPLOYEE
FOR EACH ROW
WHEN ( OLD.Dno IS NOT NULL )

UPDATE DEPARTMENT
SET Total_sal = Total_sal – OLD.Salary
WHERE Dno = OLD.Dno;

(b) R5: CREATE TRIGGER Inform_supervisor1
BEFORE INSERT OR UPDATE OF Salary, Supervisor_ssn

ON EMPLOYEE
FOR EACH ROW
WHEN ( NEW.Salary > ( SELECT Salary FROM EMPLOYEE

WHERE Ssn = NEW.Supervisor_ssn ) )
inform_supervisor(NEW.Supervisor_ssn, NEW.Ssn );

Figure 26.2
Specifying active rules
as triggers in Oracle
notation. (a) Triggers
for automatically main-
taining the consistency
of Total_sal of
DEPARTMENT. (b)
Trigger for comparing
an employee’s salary
with that of his or her
supervisor.
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The CREATE TRIGGER statement specifies a trigger (or active rule) name—
Total_sal1 for R1. The AFTER clause specifies that the rule will be triggered after the
events that trigger the rule occur. The triggering events—an insert of a new
employee in this example—are specified following the AFTER keyword.3

The ON clause specifies the relation on which the rule is specified—EMPLOYEE for
R1. The optional keywords FOR EACH ROW specify that the rule will be triggered
once for each row that is affected by the triggering event.4

The optional WHEN clause is used to specify any conditions that need to be checked
after the rule is triggered, but before the action is executed. Finally, the action(s) to
be taken is (are) specified as a PL/SQL block, which typically contains one or more
SQL statements or calls to execute external procedures.

The four triggers (active rules) R1, R2, R3, and R4 illustrate a number of features of
active rules. First, the basic events that can be specified for triggering the rules are
the standard SQL update commands: INSERT, DELETE, and UPDATE. They are spec-
ified by the keywords INSERT, DELETE, and UPDATE in Oracle notation. In the case
of UPDATE, one may specify the attributes to be updated—for example, by writing
UPDATE OF Salary, Dno. Second, the rule designer needs to have a way to refer to the
tuples that have been inserted, deleted, or modified by the triggering event. The key-
words NEW and OLD are used in Oracle notation; NEW is used to refer to a newly
inserted or newly updated tuple, whereas OLD is used to refer to a deleted tuple or to
a tuple before it was updated.

Thus, rule R1 is triggered after an INSERT operation is applied to the EMPLOYEE
relation. In R1, the condition (NEW.Dno IS NOT NULL) is checked, and if it evaluates
to true, meaning that the newly inserted employee tuple is related to a department,
then the action is executed. The action updates the DEPARTMENT tuple(s) related to
the newly inserted employee by adding their salary (NEW.Salary) to the Total_sal
attribute of their related department.

Rule R2 is similar to R1, but it is triggered by an UPDATE operation that updates the
SALARY of an employee rather than by an INSERT. Rule R3 is triggered by an update
to the Dno attribute of EMPLOYEE, which signifies changing an employee’s assign-
ment from one department to another. There is no condition to check in R3, so the
action is executed whenever the triggering event occurs. The action updates both
the old department and new department of the reassigned employees by adding
their salary to Total_sal of their new department and subtracting their salary from
Total_sal of their old department. Note that this should work even if the value of Dno
is NULL, because in this case no department will be selected for the rule action.5

3As we will see, it is also possible to specify BEFORE instead of AFTER, which indicates that the rule is
triggered before the triggering event is executed.

4Again, we will see that an alternative is to trigger the rule only once even if multiple rows (tuples) are
affected by the triggering event.
5R1, R2, and R4 can also be written without a condition. However, it may be more efficient to execute
them with the condition since the action is not invoked unless it is required.
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<trigger> ::= CREATE TRIGGER <trigger name>
( AFTER I BEFORE ) <triggering events> ON <table name>
[ FOR EACH ROW ]
[ WHEN <condition> ]
<trigger actions> ;

<triggering events> ::= <trigger event> {OR <trigger event> }
<trigger event> ::= INSERT I DELETE I UPDATE [ OF <column name> { , <column name> } ]
<trigger action> ::= <PL/SQL block>

Figure 26.3
A syntax summary for specifying triggers in the Oracle system (main options only).

It is important to note the effect of the optional FOR EACH ROW clause, which sig-
nifies that the rule is triggered separately for each tuple. This is known as a row-level
trigger. If this clause was left out, the trigger would be known as a statement-level
trigger and would be triggered once for each triggering statement. To see the differ-
ence, consider the following update operation, which gives a 10 percent raise to all
employees assigned to department 5. This operation would be an event that triggers
rule R2:

UPDATE EMPLOYEE
SET Salary = 1.1 * Salary
WHERE Dno = 5;

Because the above statement could update multiple records, a rule using row-level
semantics, such as R2 in Figure 26.2, would be triggered once for each row, whereas a
rule using statement-level semantics is triggered only once. The Oracle system allows
the user to choose which of the above options is to be used for each rule. Including
the optional FOR EACH ROW clause creates a row-level trigger, and leaving it out
creates a statement-level trigger. Note that the keywords NEW and OLD can only be
used with row-level triggers.

As a second example, suppose we want to check whenever an employee’s salary is
greater than the salary of his or her direct supervisor. Several events can trigger this
rule: inserting a new employee, changing an employee’s salary, or changing an
employee’s supervisor. Suppose that the action to take would be to call an external
procedure inform_supervisor,6 which will notify the supervisor. The rule could then
be written as in R5 (see Figure 26.2(b)).

Figure 26.3 shows the syntax for specifying some of the main options available in
Oracle triggers. We will describe the syntax for triggers in the SQL-99 standard in
Section 26.1.5.

6Assuming that an appropriate external procedure has been declared. This is a feature that is available
in SQL-99 and later standards.
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26.1.2 Design and Implementation Issues 
for Active Databases

The previous section gave an overview of some of the main concepts for specifying
active rules. In this section, we discuss some additional issues concerning how rules
are designed and implemented. The first issue concerns activation, deactivation,
and grouping of rules. In addition to creating rules, an active database system
should allow users to activate, deactivate, and drop rules by referring to their rule
names. A deactivated rule will not be triggered by the triggering event. This feature
allows users to selectively deactivate rules for certain periods of time when they are
not needed. The activate command will make the rule active again. The drop com-
mand deletes the rule from the system. Another option is to group rules into named
rule sets, so the whole set of rules can be activated, deactivated, or dropped. It is also
useful to have a command that can trigger a rule or rule set via an explicit PROCESS
RULES command issued by the user.

The second issue concerns whether the triggered action should be executed before,
after, instead of, or concurrently with the triggering event. A before trigger executes
the trigger before executing the event that caused the trigger. It can be used in appli-
cations such as checking for constraint violations. An after trigger executes the trig-
ger after executing the event, and it can be used in applications such as maintaining
derived data and monitoring for specific events and conditions. An instead of trig-
ger executes the trigger instead of executing the event, and it can be used in applica-
tions such as executing corresponding updates on base relations in response to an
event that is an update of a view.

A related issue is whether the action being executed should be considered as a separate
transaction or whether it should be part of the same transaction that triggered the
rule. We will try to categorize the various options. It is important to note that not all
options may be available for a particular active database system. In fact, most com-
mercial systems are limited to one or two of the options that we will now discuss.

Let us assume that the triggering event occurs as part of a transaction execution. We
should first consider the various options for how the triggering event is related to
the evaluation of the rule’s condition. The rule condition evaluation is also known as
rule consideration, since the action is to be executed only after considering whether
the condition evaluates to true or false. There are three main possibilities for rule
consideration:

1. Immediate consideration. The condition is evaluated as part of the same
transaction as the triggering event, and is evaluated immediately. This case
can be further categorized into three options:
■ Evaluate the condition before executing the triggering event.
■ Evaluate the condition after executing the triggering event.
■ Evaluate the condition instead of executing the triggering event.

2. Deferred consideration. The condition is evaluated at the end of the trans-
action that included the triggering event. In this case, there could be many
triggered rules waiting to have their conditions evaluated.
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3. Detached consideration. The condition is evaluated as a separate transac-
tion, spawned from the triggering transaction.

The next set of options concerns the relationship between evaluating the rule condi-
tion and executing the rule action. Here, again, three options are possible:
immediate, deferred, or detached execution. Most active systems use the first
option. That is, as soon as the condition is evaluated, if it returns true, the action is
immediately executed.

The Oracle system (see Section 26.1.1) uses the immediate consideration model, but
it allows the user to specify for each rule whether the before or after option is to be
used with immediate condition evaluation. It also uses the immediate execution
model. The STARBURST system (see Section 26.1.3) uses the deferred consideration
option, meaning that all rules triggered by a transaction wait until the triggering
transaction reaches its end and issues its COMMIT WORK command before the rule
conditions are evaluated.7

Another issue concerning active database rules is the distinction between row-level
rules and statement-level rules. Because SQL update statements (which act as trig-
gering events) can specify a set of tuples, one has to distinguish between whether the
rule should be considered once for the whole statement or whether it should be con-
sidered separately for each row (that is, tuple) affected by the statement. The SQL-99
standard (see Section 26.1.5) and the Oracle system (see Section 26.1.1) allow the
user to choose which of the options is to be used for each rule, whereas STAR-
BURST uses statement-level semantics only. We will give examples of how 
statement-level triggers can be specified in Section 26.1.3.

One of the difficulties that may have limited the widespread use of active rules, in
spite of their potential to simplify database and software development, is that there
are no easy-to-use techniques for designing, writing, and verifying rules. For exam-
ple, it is quite difficult to verify that a set of rules is consistent, meaning that two or
more rules in the set do not contradict one another. It is also difficult to guarantee
termination of a set of rules under all circumstances. To illustrate the termination

R1: CREATE TRIGGER T1
AFTER INSERT ON TABLE1
FOR EACH ROW

UPDATE TABLE2
SET Attribute1 = ... ;

R2: CREATE TRIGGER T2
AFTER UPDATE OF Attribute1 ON TABLE2
FOR EACH ROW

INSERT INTO TABLE1 VALUES ( ... );

Figure 26.4
An example to illus-
trate the termination
problem for active
rules.

7STARBURST also allows the user to start rule consideration explicitly via a PROCESS RULES com-
mand.
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problem briefly, consider the rules in Figure 26.4. Here, rule R1 is triggered by an
INSERT event on TABLE1 and its action includes an update event on Attribute1 of
TABLE2. However, rule R2’s triggering event is an UPDATE event on Attribute1 of
TABLE2, and its action includes an INSERT event on TABLE1. In this example, it is
easy to see that these two rules can trigger one another indefinitely, leading to non-
termination. However, if dozens of rules are written, it is very difficult to determine
whether termination is guaranteed or not.

If active rules are to reach their potential, it is necessary to develop tools for the
design, debugging, and monitoring of active rules that can help users design and
debug their rules.

26.1.3 Examples of Statement-Level Active Rules 
in STARBURST

We now give some examples to illustrate how rules can be specified in the STAR-
BURST experimental DBMS. This will allow us to demonstrate how statement-level
rules can be written, since these are the only types of rules allowed in STARBURST.

The three active rules R1S, R2S, and R3S in Figure 26.5 correspond to the first three
rules in Figure 26.2, but they use STARBURST notation and statement-level seman-
tics. We can explain the rule structure using rule R1S. The CREATE RULE statement
specifies a rule name—Total_sal1 for R1S. The ON clause specifies the relation on
which the rule is specified—EMPLOYEE for R1S. The WHEN clause is used to spec-
ify the events that trigger the rule.8 The optional IF clause is used to specify any
conditions that need to be checked. Finally, the THEN clause is used to specify the
actions to be taken, which are typically one or more SQL statements.

In STARBURST, the basic events that can be specified for triggering the rules are the
standard SQL update commands: INSERT, DELETE, and UPDATE. These are speci-
fied by the keywords INSERTED, DELETED, and UPDATED in STARBURST nota-
tion. Second, the rule designer needs to have a way to refer to the tuples that have
been modified. The keywords INSERTED, DELETED, NEW-UPDATED, and OLD-
UPDATED are used in STARBURST notation to refer to four transition tables (rela-
tions) that include the newly inserted tuples, the deleted tuples, the updated tuples
before they were updated, and the updated tuples after they were updated, respec-
tively. Obviously, depending on the triggering events, only some of these transition
tables may be available. The rule writer can refer to these tables when writing the
condition and action parts of the rule. Transition tables contain tuples of the same
type as those in the relation specified in the ON clause of the rule—for R1S, R2S,
and R3S, this is the EMPLOYEE relation.

In statement-level semantics, the rule designer can only refer to the transition tables
as a whole and the rule is triggered only once, so the rules must be written differ-
ently than for row-level semantics. Because multiple employee tuples may be

8Note that the WHEN keyword specifies events in STARBURST but is used to specify the rule condition

in SQL and Oracle triggers.
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R1S: CREATE RULE Total_sal1 ON EMPLOYEE
WHEN INSERTED
IF EXISTS ( SELECT * FROM INSERTED WHERE Dno IS NOT NULL )
THEN UPDATE DEPARTMENT AS D

SET D.Total_sal = D.Total_sal +
( SELECT SUM (I.Salary) FROM INSERTED AS I WHERE D.Dno = I.Dno )

WHERE D.Dno IN ( SELECT Dno FROM INSERTED );

R2S: CREATE RULE Total_sal2 ON EMPLOYEE
WHEN UPDATED ( Salary  )
IF EXISTS ( SELECT * FROM NEW-UPDATED WHERE Dno IS NOT NULL )

OR EXISTS ( SELECT * FROM OLD-UPDATED WHERE Dno IS NOT NULL )
THEN UPDATE DEPARTMENT AS D

SET D.Total_sal = D.Total_sal +
( SELECT SUM (N.Salary) FROM NEW-UPDATED AS N

WHERE D.Dno = N.Dno ) –
( SELECT SUM (O.Salary) FROM OLD-UPDATED AS O

WHERE D.Dno = O.Dno )
WHERE D.Dno IN ( SELECT Dno FROM NEW-UPDATED ) OR

D.Dno IN ( SELECT Dno FROM OLD-UPDATED );

R3S: CREATE RULE Total_sal3 ON EMPLOYEE
WHEN UPDATED ( Dno  )
THEN UPDATE DEPARTMENT AS D

SET D.Total_sal = D.Total_sal +
( SELECT SUM (N.Salary) FROM NEW-UPDATED AS N

WHERE D.Dno = N.Dno )
WHERE D.Dno IN ( SELECT Dno FROM NEW-UPDATED );
UPDATE DEPARTMENT AS D
SET D.Total_sal = Total_sal –

( SELECT SUM (O.Salary) FROM OLD-UPDATED AS O
WHERE D.Dno = O.Dno )

WHERE D.Dno IN ( SELECT Dno FROM OLD-UPDATED );

Figure 26.5
Active rules using statement-level semantics in STARBURST notation.

inserted in a single insert statement, we have to check if at least one of the newly
inserted employee tuples is related to a department. In R1S, the condition

EXISTS (SELECT * FROM INSERTED WHERE Dno IS NOT NULL )

is checked, and if it evaluates to true, then the action is executed. The action updates
in a single statement the DEPARTMENT tuple(s) related to the newly inserted
employee(s) by adding their salaries to the Total_sal attribute of each related depart-
ment. Because more than one newly inserted employee may belong to the same
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department, we use the SUM aggregate function to ensure that all their salaries are
added.

Rule R2S is similar to R1S, but is triggered by an UPDATE operation that updates the
salary of one or more employees rather than by an INSERT. Rule R3S is triggered by
an update to the Dno attribute of EMPLOYEE, which signifies changing one or more
employees’ assignment from one department to another. There is no condition in
R3S, so the action is executed whenever the triggering event occurs.9 The action
updates both the old department(s) and new department(s) of the reassigned
employees by adding their salary to Total_sal of each new department and subtract-
ing their salary from Total_sal of each old department.

In our example, it is more complex to write the statement-level rules than the row-
level rules, as can be illustrated by comparing Figures 26.2 and 26.5. However, this is
not a general rule, and other types of active rules may be easier to specify when
using statement-level notation than when using row-level notation.

The execution model for active rules in STARBURST uses deferred consideration.
That is, all the rules that are triggered within a transaction are placed in a set—
called the conflict set—which is not considered for evaluation of conditions and
execution until the transaction ends (by issuing its COMMIT WORK command).
STARBURST also allows the user to explicitly start rule consideration in the middle
of a transaction via an explicit PROCESS RULES command. Because multiple rules
must be evaluated, it is necessary to specify an order among the rules. The syntax for
rule declaration in STARBURST allows the specification of ordering among the
rules to instruct the system about the order in which a set of rules should be consid-
ered.10 Additionally, the transition tables—INSERTED, DELETED, NEW-UPDATED,
and OLD-UPDATED—contain the net effect of all the operations within the transac-
tion that affected each table, since multiple operations may have been applied to
each table during the transaction.

26.1.4 Potential Applications for Active Databases
We now briefly discuss some of the potential applications of active rules. Obviously,
one important application is to allow notification of certain conditions that occur.
For example, an active database may be used to monitor, say, the temperature of an
industrial furnace. The application can periodically insert in the database the tem-
perature reading records directly from temperature sensors, and active rules can be
written that are triggered whenever a temperature record is inserted, with a condi-
tion that checks if the temperature exceeds the danger level, and results in the action
to raise an alarm.

9As in the Oracle examples, rules R1S and R2S can be written without a condition. However, it may be
more efficient to execute them with the condition since the action is not invoked unless it is required.
10If no order is specified between a pair of rules, the system default order is based on placing the rule
declared first ahead of the other rule.
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Active rules can also be used to enforce integrity constraints by specifying the types
of events that may cause the constraints to be violated and then evaluating appro-
priate conditions that check whether the constraints are actually violated by the
event or not. Hence, complex application constraints, often known as business
rules, may be enforced that way. For example, in the UNIVERSITY database applica-
tion, one rule may monitor the GPA of students whenever a new grade is entered,
and it may alert the advisor if the GPA of a student falls below a certain threshold;
another rule may check that course prerequisites are satisfied before allowing a stu-
dent to enroll in a course; and so on.

Other applications include the automatic maintenance of derived data, such as the
examples of rules R1 through R4 that maintain the derived attribute Total_sal when-
ever individual employee tuples are changed. A similar application is to use active
rules to maintain the consistency of materialized views (see Section 5.3) whenever
the base relations are modified. Alternately, an update operation specified on a view
can be a triggering event, which can be converted to updates on the base relations by
using an instead of trigger. These applications are also relevant to the new data ware-
housing technologies (see Chapter 29). A related application maintains that
replicated tables are consistent by specifying rules that modify the replicas when-
ever the master table is modified.

26.1.5 Triggers in SQL-99
Triggers in the SQL-99 and later standards are quite similar to the examples we dis-
cussed in Section 26.1.1, with some minor syntactic differences. The basic events
that can be specified for triggering the rules are the standard SQL update com-
mands: INSERT, DELETE, and UPDATE. In the case of UPDATE, one may specify the
attributes to be updated. Both row-level and statement-level triggers are allowed,
indicated in the trigger by the clauses FOR EACH ROW and FOR EACH STATEMENT,
respectively. One syntactic difference is that the trigger may specify particular tuple
variable names for the old and new tuples instead of using the keywords NEW and
OLD, as shown in Figure 26.1. Trigger T1 in Figure 26.6 shows how the row-level
trigger R2 from Figure 26.1(a) may be specified in SQL-99. Inside the
REFERENCING clause, we named tuple variables (aliases) O and N to refer to the
OLD tuple (before modification) and NEW tuple (after modification), respectively.
Trigger T2 in Figure 26.6 shows how the statement-level trigger R2S from Figure
26.5 may be specified in SQL-99. For a statement-level trigger, the REFERENCING
clause is used to refer to the table of all new tuples (newly inserted or newly
updated) as N, whereas the table of all old tuples (deleted tuples or tuples before
they were updated) is referred to as O.

26.2 Temporal Database Concepts
Temporal databases, in the broadest sense, encompass all database applications that
require some aspect of time when organizing their information. Hence, they 
provide a good example to illustrate the need for developing a set of unifying con-
cepts for application developers to use. Temporal database applications have been
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developed since the early days of database usage. However, in creating these applica-
tions, it is mainly left to the application designers and developers to discover, design,
program, and implement the temporal concepts they need. There are many exam-
ples of applications where some aspect of time is needed to maintain the informa-
tion in a database. These include healthcare, where patient histories need to be
maintained; insurance, where claims and accident histories are required as well as
information about the times when insurance policies are in effect; reservation sys-
tems in general (hotel, airline, car rental, train, and so on), where information on the
dates and times when reservations are in effect are required; scientific databases,
where data collected from experiments includes the time when each data is meas-
ured; and so on. Even the two examples used in this book may be easily expanded
into temporal applications. In the COMPANY database, we may wish to keep
SALARY, JOB, and PROJECT histories on each employee. In the UNIVERSITY data-
base, time is already included in the SEMESTER and YEAR of each SECTION of a
COURSE, the grade history of a STUDENT, and the information on research grants.
In fact, it is realistic to conclude that the majority of database applications have
some temporal information. However, users often attempt to simplify or ignore
temporal aspects because of the complexity that they add to their applications.

In this section, we will introduce some of the concepts that have been developed to
deal with the complexity of temporal database applications. Section 26.2.1 gives an
overview of how time is represented in databases, the different types of temporal

T1: CREATE TRIGGER Total_sal1
AFTER UPDATE OF Salary ON EMPLOYEE
REFERENCING OLD ROW AS O, NEW ROW AS N
FOR EACH ROW
WHEN (  N.Dno IS NOT NULL )
UPDATE DEPARTMENT
SET Total_sal = Total_sal + N.salary – O.salary
WHERE Dno = N.Dno;

T2: CREATE TRIGGER Total_sal2
AFTER UPDATE OF Salary ON EMPLOYEE
REFERENCING OLD TABLE AS O, NEW TABLE AS N
FOR EACH STATEMENT
WHEN EXISTS ( SELECT *FROM N WHERE N.Dno IS NOT NULL ) OR

EXISTS ( SELECT * FROM O WHERE O.Dno IS NOT NULL )
UPDATE DEPARTMENT AS D
SET D.Total_sal = D.Total_sal
+ ( SELECT SUM (N.Salary) FROM N WHERE D.Dno=N.Dno )
– ( SELECT SUM (O.Salary) FROM O WHERE D.Dno=O.Dno )
WHERE Dno IN ( ( SELECT Dno FROM N ) UNION ( SELECT Dno FROM O ) );

Figure 26.6
Trigger T1 illustrating
the syntax for defining
triggers in SQL-99.
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information, and some of the different dimensions of time that may be needed.
Section 26.2.2 discusses how time can be incorporated into relational databases.
Section 26.2.3 gives some additional options for representing time that are possible
in database models that allow complex-structured objects, such as object databases.
Section 26.2.4 introduces operations for querying temporal databases, and gives a
brief overview of the TSQL2 language, which extends SQL with temporal concepts.
Section 26.2.5 focuses on time series data, which is a type of temporal data that is
very important in practice.

26.2.1 Time Representation, Calendars, 
and Time Dimensions

For temporal databases, time is considered to be an ordered sequence of points in
some granularity that is determined by the application. For example, suppose that
some temporal application never requires time units that are less than one second.
Then, each time point represents one second using this granularity. In reality, each
second is a (short) time duration, not a point, since it may be further divided into
milliseconds, microseconds, and so on. Temporal database researchers have used the
term chronon instead of point to describe this minimal granularity for a particular
application. The main consequence of choosing a minimum granularity—say, one
second—is that events occurring within the same second will be considered to be
simultaneous events, even though in reality they may not be.

Because there is no known beginning or ending of time, one needs a reference point
from which to measure specific time points. Various calendars are used by various
cultures (such as Gregorian (western), Chinese, Islamic, Hindu, Jewish, Coptic, and
so on) with different reference points. A calendar organizes time into different time
units for convenience. Most calendars group 60 seconds into a minute, 60 minutes
into an hour, 24 hours into a day (based on the physical time of earth’s rotation
around its axis), and 7 days into a week. Further grouping of days into months and
months into years either follow solar or lunar natural phenomena, and are generally
irregular. In the Gregorian calendar, which is used in most western countries, days
are grouped into months that are 28, 29, 30, or 31 days, and 12 months are grouped
into a year. Complex formulas are used to map the different time units to one
another.

In SQL2, the temporal data types (see Chapter 4) include DATE (specifying Year,
Month, and Day as YYYY-MM-DD), TIME (specifying Hour, Minute, and Second as
HH:MM:SS), TIMESTAMP (specifying a Date/Time combination, with options for
including subsecond divisions if they are needed), INTERVAL (a relative time dura-
tion, such as 10 days or 250 minutes), and PERIOD (an anchored time duration with
a fixed starting point, such as the 10-day period from January 1, 2009, to January 10,
2009, inclusive).11

11Unfortunately, the terminology has not been used consistently. For example, the term interval is often
used to denote an anchored duration. For consistency, we will use the SQL terminology.
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Event Information versus Duration (or State) Information. A temporal data-
base will store information concerning when certain events occur, or when certain
facts are considered to be true. There are several different types of temporal infor-
mation. Point events or facts are typically associated in the database with a single
time point in some granularity. For example, a bank deposit event may be associ-
ated with the timestamp when the deposit was made, or the total monthly sales of a
product (fact) may be associated with a particular month (say, February 2010). Note
that even though such events or facts may have different granularities, each is still
associated with a single time value in the database. This type of information is often
represented as time series data as we will discuss in Section 26.2.5. Duration events
or facts, on the other hand, are associated with a specific time period in the data-
base.12 For example, an employee may have worked in a company from August 15,
2003 until November 20, 2008.

A time period is represented by its start and end time points [START-TIME, END-
TIME]. For example, the above period is represented as [2003-08-15, 2008-11-20].
Such a time period is often interpreted to mean the set of all time points from start-
time to end-time, inclusive, in the specified granularity. Hence, assuming day gran-
ularity, the period [2003-08-15, 2008-11-20] represents the set of all days from
August 15, 2003, until November 20, 2008, inclusive.13

Valid Time and Transaction Time Dimensions. Given a particular event or fact
that is associated with a particular time point or time period in the database, the
association may be interpreted to mean different things. The most natural interpre-
tation is that the associated time is the time that the event occurred, or the period
during which the fact was considered to be true in the real world. If this interpreta-
tion is used, the associated time is often referred to as the valid time. A temporal
database using this interpretation is called a valid time database.

However, a different interpretation can be used, where the associated time refers to
the time when the information was actually stored in the database; that is, it is the
value of the system time clock when the information is valid in the system.14 In this
case, the associated time is called the transaction time. A temporal database using
this interpretation is called a transaction time database.

Other interpretations can also be intended, but these are considered to be the most
common ones, and they are referred to as time dimensions. In some applications,
only one of the dimensions is needed and in other cases both time dimensions are
required, in which case the temporal database is called a bitemporal database. If

12This is the same as an anchored duration. It has also been frequently called a time interval, but to avoid
confusion we will use period to be consistent with SQL terminology.
13The representation [2003-08-15, 2008-11-20] is called a closed interval representation. One can
also use an open interval, denoted [2003-08-15, 2008-11-21), where the set of points does not include
the end point. Although the latter representation is sometimes more convenient, we shall use closed
intervals except where indicated.
14The explanation is more involved, as we will see in Section 26.2.3.
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(a)

Name

EMP_VT

Salary DnoSsn Supervisor_ssn Vst Vet

Name Salary Supervisor_ssnSsn Tst Tet

(b)

(c)

Dname

DEPT_VT

EMP_TT

Dname Total_sal Manager_ssnDno

Dno

Tst Tet

DEPT_TT

Total_salDno Manager_ssn Vst Vet

Name Salary Supervisor_ssnSsn Dno Tst Tet

EMP_BT

Dname Total_sal Manager_ssnDno Tst Tet

DEPT_BT

Vst Vet

Vst Vet

Figure 26.7
Different types of temporal
relational databases. (a) Valid
time database schema. (b)
Transaction time database
schema. (c) Bitemporal data-
base schema.

other interpretations are intended for time, the user can define the semantics and
program the applications appropriately, and it is called a user-defined time.

The next section shows how these concepts can be incorporated into relational
databases, and Section 26.2.3 shows an approach to incorporate temporal concepts
into object databases.

26.2.2 Incorporating Time in Relational Databases 
Using Tuple Versioning

Valid Time Relations. Let us now see how the different types of temporal data-
bases may be represented in the relational model. First, suppose that we would like
to include the history of changes as they occur in the real world. Consider again the
database in Figure 26.1, and let us assume that, for this application, the granularity
is day. Then, we could convert the two relations EMPLOYEE and DEPARTMENT into
valid time relations by adding the attributes Vst (Valid Start Time) and Vet (Valid
End Time), whose data type is DATE in order to provide day granularity. This is
shown in Figure 26.7(a), where the relations have been renamed EMP_VT and
DEPT_VT, respectively.

Consider how the EMP_VT relation differs from the nontemporal EMPLOYEE rela-
tion (Figure 26.1).15 In EMP_VT, each tuple V represents a version of an employee’s

15A nontemporal relation is also called a snapshot relation because it shows only the current snapshot

or current state of the database.
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Name

Smith 123456789 25000 5 333445555 2002-06-15 2003-05-31

Smith 123456789 30000 5 333445555 2003-06-01 Now

333445555 25000 4 999887777 1999-08-20 2001-01-31

333445555 30000 5 999887777 2001-02-01 2002-03-31

333445555 40000 5 888665555 2002-04-01 Now

222447777 28000 4 999887777 2001-05-01 2002-08-10

666884444 38000 5 333445555 2003-08-01 Now

Wong

Wong

Wong

Brown

Narayan

. . .

. . .

EMP_VT

Ssn Salary Dno Supervisor_ssn Vst Vet

Dname

Research

Research

DEPT_VT

5 888665555 2002-03-312001-09-20

333445555 2002-04-015 Now

Dno Manager_ssn Vst Vet

Figure 26.8
Some tuple versions in the valid time relations EMP_VT and DEPT_VT.

information that is valid (in the real world) only during the time period [V.Vst,
V.Vet], whereas in EMPLOYEE each tuple represents only the current state or current
version of each employee. In EMP_VT, the current version of each employee typi-
cally has a special value, now, as its valid end time. This special value, now, is a
temporal variable that implicitly represents the current time as time progresses.
The nontemporal EMPLOYEE relation would only include those tuples from the
EMP_VT relation whose Vet is now.

Figure 26.8 shows a few tuple versions in the valid-time relations EMP_VT and
DEPT_VT. There are two versions of Smith, three versions of Wong, one version of
Brown, and one version of Narayan. We can now see how a valid time relation
should behave when information is changed. Whenever one or more attributes of
an employee are updated, rather than actually overwriting the old values, as would
happen in a nontemporal relation, the system should create a new version and close
the current version by changing its Vet to the end time. Hence, when the user issued
the command to update the salary of Smith effective on June 1, 2003, to $30000,
the second version of Smith was created (see Figure 26.8). At the time of this update,
the first version of Smith was the current version, with now as its Vet, but after the
update now was changed to May 31, 2003 (one less than June 1, 2003, in day granu-
larity), to indicate that the version has become a closed or history version and that
the new (second) version of Smith is now the current one.
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It is important to note that in a valid time relation, the user must generally provide
the valid time of an update. For example, the salary update of Smith may have been
entered in the database on May 15, 2003, at 8:52:12 A.M., say, even though the salary
change in the real world is effective on June 1, 2003. This is called a proactive
update, since it is applied to the database before it becomes effective in the real
world. If the update is applied to the database after it becomes effective in the real
world, it is called a retroactive update. An update that is applied at the same time as
it becomes effective is called a simultaneous update.

The action that corresponds to deleting an employee in a nontemporal database
would typically be applied to a valid time database by closing the current version of
the employee being deleted. For example, if Smith leaves the company effective
January 19, 2004, then this would be applied by changing Vet of the current version
of Smith from now to 2004-01-19. In Figure 26.8, there is no current version for
Brown, because he presumably left the company on 2002-08-10 and was logically
deleted. However, because the database is temporal, the old information on Brown is
still there.

The operation to insert a new employee would correspond to creating the first tuple
version for that employee, and making it the current version, with the Vst being the
effective (real world) time when the employee starts work. In Figure 26.7, the tuple
on Narayan illustrates this, since the first version has not been updated yet.

Notice that in a valid time relation, the nontemporal key, such as Ssn in EMPLOYEE,
is no longer unique in each tuple (version). The new relation key for EMP_VT is a
combination of the nontemporal key and the valid start time attribute Vst,16 so we
use (Ssn, Vst) as primary key. This is because, at any point in time, there should be at
most one valid version of each entity. Hence, the constraint that any two tuple ver-
sions representing the same entity should have nonintersecting valid time periods
should hold on valid time relations. Notice that if the nontemporal primary key
value may change over time, it is important to have a unique surrogate key attrib-
ute, whose value never changes for each real-world entity, in order to relate all ver-
sions of the same real-world entity.

Valid time relations basically keep track of the history of changes as they become
effective in the real world. Hence, if all real-world changes are applied, the database
keeps a history of the real-world states that are represented. However, because
updates, insertions, and deletions may be applied retroactively or proactively, there is
no record of the actual database state at any point in time. If the actual database states
are important to an application, then one should use transaction time relations.

Transaction Time Relations. In a transaction time database, whenever a change
is applied to the database, the actual timestamp of the transaction that applied the
change (insert, delete, or update) is recorded. Such a database is most useful when
changes are applied simultaneously in the majority of cases—for example, real-time
stock trading or banking transactions. If we convert the nontemporal database in

16A combination of the nontemporal key and the valid end time attribute Vet could also be used.
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Figure 26.1 into a transaction time database, then the two relations EMPLOYEE and
DEPARTMENT are converted into transaction time relations by adding the attrib-
utes Tst (Transaction Start Time) and Tet (Transaction End Time), whose data type
is typically TIMESTAMP. This is shown in Figure 26.7(b), where the relations have
been renamed EMP_TT and DEPT_TT, respectively.

In EMP_TT, each tuple V represents a version of an employee’s information that was
created at actual time V.Tst and was (logically) removed at actual time V.Tet
(because the information was no longer correct). In EMP_TT, the current version of
each employee typically has a special value, uc (Until Changed), as its transaction
end time, which indicates that the tuple represents correct information until it is
changed by some other transaction.17 A transaction time database has also been
called a rollback database,18 because a user can logically roll back to the actual
database state at any past point in time T by retrieving all tuple versions V whose
transaction time period [V.Tst, V.Tet] includes time point T.

Bitemporal Relations. Some applications require both valid time and transaction
time, leading to bitemporal relations. In our example, Figure 26.7(c) shows how
the EMPLOYEE and DEPARTMENT nontemporal relations in Figure 26.1 would
appear as bitemporal relations EMP_BT and DEPT_BT, respectively. Figure 26.9
shows a few tuples in these relations. In these tables, tuples whose transaction end
time Tet is uc are the ones representing currently valid information, whereas tuples
whose Tet is an absolute timestamp are tuples that were valid until (just before) that
timestamp. Hence, the tuples with uc in Figure 26.9 correspond to the valid time
tuples in Figure 26.7. The transaction start time attribute Tst in each tuple is the
timestamp of the transaction that created that tuple.

Now consider how an update operation would be implemented on a bitemporal
relation. In this model of bitemporal databases,19 no attributes are physically
changed in any tuple except for the transaction end time attribute Tet with a value of
uc.20 To illustrate how tuples are created, consider the EMP_BT relation. The current
version V of an employee has uc in its Tet attribute and now in its Vet attribute. If
some attribute—say, Salary—is updated, then the transaction T that performs the
update should have two parameters: the new value of Salary and the valid time VT
when the new salary becomes effective (in the real world). Assume that VT− is the

17The uc variable in transaction time relations corresponds to the now variable in valid time relations.
The semantics are slightly different though.
18Here, the term rollback does not have the same meaning as transaction rollback (see Chapter 23) dur-
ing recovery, where the transaction updates are physically undone. Rather, here the updates can be
logically undone, allowing the user to examine the database as it appeared at a previous time point.
19There have been many proposed temporal database models. We describe specific models here as
examples to illustrate the concepts.
20Some bitemporal models allow the Vet attribute to be changed also, but the interpretations of the
tuples are different in those models.
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Name

Smith 123456789 25000 5 333445555 2002-06-15

Smith 123456789 25000 5 333445555 2002-06-15

123456789 30000 5 333445555 2003-06-01

333445555 25000 4 999887777 1999-08-20

333445555 25000 4 999887777 1999-08-20

333445555 30000 5 999887777 2001-02-01

333445555 30000 5

5

4

4

5

999887777

888667777

999887777

999887777

333445555

2001-02-01

2002-04-01

2001-05-01

2001-05-01

2003-08-01

2002-06-08, 13:05:58

2003-06-04, 08:56:12

2003-06-04, 08:56:12

1999-08-20, 11:18:23

2001-01-07, 14:33:02

2001-01-07, 14:33:02

2002-03-28, 09:23:57

2002-03-28, 09:23:57

2001-04-27, 16:22:05

2002-08-12, 10:11:07

2003-07-28, 09:25:37

2003-06-04,08:56:12

uc

uc

2001-01-07,14:33:02

uc

2002-03-28,09:23:57

uc

uc

2002-08-12,10:11:07

uc

uc

Now

2003-05-31

Now

Now

2001-01-31

Now

2002-03-31

Now

Now

2002-08-10

Now

Smith

Wong

Wong

Wong

Wong

Wong 333445555

Brown 222447777

Brown 222447777

Narayan

. . .

40000

28000

28000

38000666884444

EMP_BT

Ssn Salary Dno Supervisor_ssn Vst Vet Tst Tet

Dname

Research

Research

DEPT_VT

5 888665555 Now2001-09-20

888665555 2001-09-205 1997-03-31

Dno Manager_ssn Vst Vet

2001-09-15,14:52:12

2002-03-28,09:23:57

Tst

2001-03-28,09:23:57

uc

Research 333445555 2002-04-015 Now 2002-03-28,09:23:57 uc

Tet

Figure 26.9
Some tuple versions in the bitemporal relations EMP_BT and DEPT_BT.

time point before VT in the given valid time granularity and that transaction T has a
timestamp TS(T). Then, the following physical changes would be applied to the
EMP_BT table:

1. Make a copy V2 of the current version V; set V2.Vet to VT−, V2.Tst to TS(T),
V2.Tet to uc, and insert V2 in EMP_BT; V2 is a copy of the previous current
version V after it is closed at valid time VT−.

2. Make a copy V3 of the current version V; set V3.Vst to VT, V3.Vet to now,
V3.Salary to the new salary value, V3.Tst to TS(T), V3.Tet to uc, and insert V3 in
EMP_BT; V3 represents the new current version.

3. Set V.Tet to TS(T) since the current version is no longer representing correct
information.

As an illustration, consider the first three tuples V1, V2, and V3 in EMP_BT in Figure
26.9. Before the update of Smith’s salary from 25000 to 30000, only V1 was in
EMP_BT and it was the current version and its Tet was uc. Then, a transaction T
whose timestamp TS(T) is ‘2003-06-04,08:56:12’ updates the salary to 30000 with
the effective valid time of ‘2003-06-01’. The tuple V2 is created, which is a copy of V1
except that its Vet is set to ‘2003-05-31’, one day less than the new valid time and 
its Tst is the timestamp of the updating transaction. The tuple V3 is also created,
which has the new salary, its Vst is set to ‘2003-06-01’, and its Tst is also the time-
stamp of the updating transaction. Finally, the Tet of V1 is set to the timestamp of
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the updating transaction, ‘2003-06-04,08:56:12’. Note that this is a retroactive
update, since the updating transaction ran on June 4, 2003, but the salary change is
effective on June 1, 2003.

Similarly, when Wong’s salary and department are updated (at the same time) to
30000 and 5, the updating transaction’s timestamp is ‘2001-01-07,14:33:02’ and the
effective valid time for the update is ‘2001-02-01’. Hence, this is a proactive update
because the transaction ran on January 7, 2001, but the effective date was February
1, 2001. In this case, tuple V4 is logically replaced by V5 and V6.

Next, let us illustrate how a delete operation would be implemented on a bitempo-
ral relation by considering the tuples V9 and V10 in the EMP_BT relation of Figure
26.9. Here, employee Brown left the company effective August 10, 2002, and the log-
ical delete is carried out by a transaction T with TS(T) = 2002-08-12,10:11:07.
Before this, V9 was the current version of Brown, and its Tet was uc. The logical
delete is implemented by setting V9.Tet to 2002-08-12,10:11:07 to invalidate it, and
creating the final version V10 for Brown, with its Vet = 2002-08-10 (see Figure 26.9).
Finally, an insert operation is implemented by creating the first version as illustrated
by V11 in the EMP_BT table.

Implementation Considerations. There are various options for storing the
tuples in a temporal relation. One is to store all the tuples in the same table, as
shown in Figures 26.8 and 26.9. Another option is to create two tables: one for the
currently valid information and the other for the rest of the tuples. For example, in
the bitemporal EMP_BT relation, tuples with uc for their Tet and now for their Vet
would be in one relation, the current table, since they are the ones currently valid
(that is, represent the current snapshot), and all other tuples would be in another
relation. This allows the database administrator to have different access paths, such
as indexes for each relation, and keeps the size of the current table reasonable.
Another possibility is to create a third table for corrected tuples whose Tet is not uc.

Another option that is available is to vertically partition the attributes of the tempo-
ral relation into separate relations so that if a relation has many attributes, a whole
new tuple version is created whenever any one of the attributes is updated. If the
attributes are updated asynchronously, each new version may differ in only one of
the attributes, thus needlessly repeating the other attribute values. If a separate rela-
tion is created to contain only the attributes that always change synchronously, with
the primary key replicated in each relation, the database is said to be in temporal
normal form. However, to combine the information, a variation of join known 
as temporal intersection join would be needed, which is generally expensive to
implement.

It is important to note that bitemporal databases allow a complete record of
changes. Even a record of corrections is possible. For example, it is possible that two
tuple versions of the same employee may have the same valid time but different
attribute values as long as their transaction times are disjoint. In this case, the tuple
with the later transaction time is a correction of the other tuple version. Even incor-
rectly entered valid times may be corrected this way. The incorrect state of the data-
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base will still be available as a previous database state for querying purposes. A data-
base that keeps such a complete record of changes and corrections is sometimes
called an append-only database.

26.2.3 Incorporating Time in Object-Oriented Databases 
Using Attribute Versioning

The previous section discussed the tuple versioning approach to implementing
temporal databases. In this approach, whenever one attribute value is changed, a
whole new tuple version is created, even though all the other attribute values will
be identical to the previous tuple version. An alternative approach can be used in
database systems that support complex structured objects, such as object data-
bases (see Chapter 11) or object-relational systems. This approach is called
attribute versioning.

In attribute versioning, a single complex object is used to store all the temporal
changes of the object. Each attribute that changes over time is called a time-varying
attribute, and it has its values versioned over time by adding temporal periods to
the attribute. The temporal periods may represent valid time, transaction time, or
bitemporal, depending on the application requirements. Attributes that do not
change over time are called nontime-varying and are not associated with the tem-
poral periods. To illustrate this, consider the example in Figure 26.10, which is an
attribute-versioned valid time representation of EMPLOYEE using the object defini-
tion language (ODL) notation for object databases (see Chapter 11). Here, we
assumed that name and Social Security number are nontime-varying attributes,
whereas salary, department, and supervisor are time-varying attributes (they may
change over time). Each time-varying attribute is represented as a list of tuples
<Valid_start_time, Valid_end_time, Value>, ordered by valid start time.

Whenever an attribute is changed in this model, the current attribute version is
closed and a new attribute version for this attribute only is appended to the list.
This allows attributes to change asynchronously. The current value for each attrib-
ute has now for its Valid_end_time. When using attribute versioning, it is useful to
include a lifespan temporal attribute associated with the whole object whose value
is one or more valid time periods that indicate the valid time of existence for the
whole object. Logical deletion of the object is implemented by closing the lifespan.
The constraint that any time period of an attribute within an object should be a
subset of the object’s lifespan should be enforced.

For bitemporal databases, each attribute version would have a tuple with five com-
ponents:

<Valid_start_time, Valid_end_time, Trans_start_time, Trans_end_time, Value>

The object lifespan would also include both valid and transaction time dimensions.
Therefore, the full capabilities of bitemporal databases can be available with attrib-
ute versioning. Mechanisms similar to those discussed earlier for updating tuple
versions can be applied to updating attribute versions.
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class TEMPORAL_SALARY
{ attribute Date Valid_start_time;

attribute Date Valid_end_time;
attribute float Salary;

};

class TEMPORAL_DEPT
{ attribute Date Valid_start_time;

attribute Date Valid_end_time;
attribute DEPARTMENT_VT Dept;

};

class TEMPORAL_SUPERVISOR
{ attribute Date Valid_start_time;

attribute Date Valid_end_time;
attribute EMPLOYEE_VT Supervisor;

};

class TEMPORAL_LIFESPAN
{ attribute Date Valid_ start time;

attribute Date Valid end time;
};

class EMPLOYEE_VT
( extent EMPLOYEES   )
{ attribute list<TEMPORAL_LIFESPAN> lifespan;

attribute string Name;
attribute string Ssn;
attribute list<TEMPORAL_SALARY> Sal_history;
attribute list<TEMPORAL_DEPT> Dept_history;
attribute list <TEMPORAL_SUPERVISOR> Supervisor_history;

};

Figure 26.10
Possible ODL schema for a temporal valid time EMPLOYEE_VT
object class using attribute versioning.

26.2.4 Temporal Querying Constructs 
and the TSQL2 Language

So far, we have discussed how data models may be extended with temporal con-
structs. Now we give a brief overview of how query operations need to be extended
for temporal querying. We will briefly discuss the TSQL2 language, which extends
SQL for querying valid time, transaction time, and bitemporal relational databases.

In nontemporal relational databases, the typical selection conditions involve attrib-
ute conditions, and tuples that satisfy these conditions are selected from the set of
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current tuples. Following that, the attributes of interest to the query are specified by
a projection operation (see Chapter 6). For example, in the query to retrieve the
names of all employees working in department 5 whose salary is greater than 30000,
the selection condition would be as follows:

((Salary > 30000) AND (Dno = 5))

The projected attribute would be Name. In a temporal database, the conditions may
involve time in addition to attributes. A pure time condition involves only time—
for example, to select all employee tuple versions that were valid on a certain time
point T or that were valid during a certain time period [T1, T2]. In this case, the spec-
ified time period is compared with the valid time period of each tuple version [T.Vst,
T.Vet], and only those tuples that satisfy the condition are selected. In these opera-
tions, a period is considered to be equivalent to the set of time points from T1 to T2
inclusive, so the standard set comparison operations can be used. Additional opera-
tions, such as whether one time period ends before another starts are also needed.21

Some of the more common operations used in queries are as follows:

[T.Vst, T.Vet] INCLUDES [T1, T2] Equivalent to T1 ≥ T.Vst AND T2 ≤ T.Vet

[T.Vst, T.Vet] INCLUDED_IN [T1, T2] Equivalent to T1 ≤ T.Vst AND T2 ≥ T.Vet

[T.Vst, T.Vet] OVERLAPS [T1, T2] Equivalent to (T1 ≤ T.Vet AND T2 ≥ T.Vst)22

[T.Vst, T.Vet] BEFORE [T1, T2] Equivalent to T1 ≥ T.Vet

[T.Vst, T.Vet] AFTER [T1, T2] Equivalent to T2 ≤ T.Vst

[T.Vst, T.Vet] MEETS_BEFORE [T1, T2] Equivalent to T1 = T.Vet + 123

[T.Vst, T.Vet] MEETS_AFTER [T1, T2] Equivalent to T2 + 1 = T.Vst

Additionally, operations are needed to manipulate time periods, such as computing
the union or intersection of two time periods. The results of these operations may
not themselves be periods, but rather temporal elements—a collection of one or
more disjoint time periods such that no two time periods in a temporal element are
directly adjacent. That is, for any two time periods [T1, T2] and [T3, T4] in a tempo-
ral element, the following three conditions must hold:

■ [T1, T2] intersection [T3, T4] is empty.

■ T3 is not the time point following T2 in the given granularity.

■ T1 is not the time point following T4 in the given granularity.

The latter conditions are necessary to ensure unique representations of temporal
elements. If two time periods [T1, T2] and [T3, T4] are adjacent, they are combined

21A complete set of operations, known as Allen’s algebra (Allen, 1983), has been defined for compar-
ing time periods.
22This operation returns true if the intersection of the two periods is not empty; it has also been called
INTERSECTS_WITH.
23Here, 1 refers to one time point in the specified granularity. The MEETS operations basically specify if
one period starts immediately after another period ends.
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into a single time period [T1, T4]. This is called coalescing of time periods.
Coalescing also combines intersecting time periods.

To illustrate how pure time conditions can be used, suppose a user wants to select all
employee versions that were valid at any point during 2002. The appropriate selec-
tion condition applied to the relation in Figure 26.8 would be

[T.Vst, T.Vet] OVERLAPS [2002-01-01, 2002-12-31]

Typically, most temporal selections are applied to the valid time dimension. For a
bitemporal database, one usually applies the conditions to the currently correct
tuples with uc as their transaction end times. However, if the query needs to be
applied to a previous database state, an AS_OF T clause is appended to the query,
which means that the query is applied to the valid time tuples that were correct in
the database at time T.

In addition to pure time conditions, other selections involve attribute and time
conditions. For example, suppose we wish to retrieve all EMP_VT tuple versions T
for employees who worked in department 5 at any time during 2002. In this case,
the condition is

[T.Vst, T.Vet]OVERLAPS [2002-01-01, 2002-12-31] AND (T.Dno = 5)

Finally, we give a brief overview of the TSQL2 query language, which extends SQL
with constructs for temporal databases. The main idea behind TSQL2 is to allow
users to specify whether a relation is nontemporal (that is, a standard SQL relation)
or temporal. The CREATE TABLE statement is extended with an optional AS clause to
allow users to declare different temporal options. The following options are avail-
able:

■ <AS VALID STATE <GRANULARITY> (valid time relation with valid time
period)

■ <AS VALID EVENT <GRANULARITY> (valid time relation with valid time
point)

■ <AS TRANSACTION (transaction time relation with transaction time period)

■ <AS VALID STATE <GRANULARITY> AND TRANSACTION (bitemporal rela-
tion, valid time period)

■ <AS VALID EVENT <GRANULARITY> AND TRANSACTION (bitemporal rela-
tion, valid time point)

The keywords STATE and EVENT are used to specify whether a time period or time
point is associated with the valid time dimension. In TSQL2, rather than have the
user actually see how the temporal tables are implemented (as we discussed in the
previous sections), the TSQL2 language adds query language constructs to specify
various types of temporal selections, temporal projections, temporal aggregations,
transformation among granularities, and many other concepts. The book by
Snodgrass et al. (1995) describes the language.
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26.2.5 Time Series Data
Time series data is used very often in financial, sales, and economics applications.
They involve data values that are recorded according to a specific predefined
sequence of time points. Therefore, they are a special type of valid event data, where
the event time points are predetermined according to a fixed calendar. Consider the
example of closing daily stock prices of a particular company on the New York Stock
Exchange. The granularity here is day, but the days that the stock market is open are
known (nonholiday weekdays). Hence, it has been common to specify a computa-
tional procedure that calculates the particular calendar associated with a time
series. Typical queries on time series involve temporal aggregation over higher
granularity intervals—for example, finding the average or maximum weekly closing
stock price or the maximum and minimum monthly closing stock price from the
daily information.

As another example, consider the daily sales dollar amount at each store of a chain
of stores owned by a particular company. Again, typical temporal aggregates would
be retrieving the weekly, monthly, or yearly sales from the daily sales information
(using the sum aggregate function), or comparing same store monthly sales with
previous monthly sales, and so on.

Because of the specialized nature of time series data and the lack of support for it in
older DBMSs, it has been common to use specialized time series management sys-
tems rather than general-purpose DBMSs for managing such information. In such
systems, it has been common to store time series values in sequential order in a file,
and apply specialized time series procedures to analyze the information. The prob-
lem with this approach is that the full power of high-level querying in languages
such as SQL will not be available in such systems.

More recently, some commercial DBMS packages are offering time series exten-
sions, such as the Oracle time cartridge and the time series data blade of Informix
Universal Server. In addition, the TSQL2 language provides some support for time
series in the form of event tables.

26.3 Spatial Database Concepts24

26.3.1 Introduction to Spatial Databases
Spatial databases incorporate functionality that provides support for databases that
keep track of objects in a multidimensional space. For example, cartographic data-
bases that store maps include two-dimensional spatial descriptions of their
objects—from countries and states to rivers, cities, roads, seas, and so on. The sys-
tems that manage geographic data and related applications are known as

24The contribution of Pranesh Parimala Ranganathan to this section is appreciated.



958 Chapter 26 Enhanced Data Models for Advanced Applications

Table 26.1 Common Types of Analysis for Spatial Data

Analysis Type Type of Operations and Measurements

Measurements Distance, perimeter, shape, adjacency, and direction

Spatial analysis/statistics Pattern, autocorrelation, and indexes of similarity and topology using
spatial and nonspatial data

Flow analysis Connectivity and shortest path

Location analysis Analysis of points and lines within a polygon

Terrain analysis Slope/aspect, catchment area, drainage network

Search Thematic search, search by region

Geographical Information Systems (GIS), and they are used in areas such as envi-
ronmental applications, transportation systems, emergency response systems, and
battle management. Other databases, such as meteorological databases for weather
information, are three-dimensional, since temperatures and other meteorological
information are related to three-dimensional spatial points. In general, a spatial
database stores objects that have spatial characteristics that describe them and that
have spatial relationships among them. The spatial relationships among the objects
are important, and they are often needed when querying the database. Although a
spatial database can in general refer to an n-dimensional space for any n, we will
limit our discussion to two dimensions as an illustration.

A spatial database is optimized to store and query data related to objects in space,
including points, lines and polygons. Satellite images are a prominent example of
spatial data. Queries posed on these spatial data, where predicates for selection deal
with spatial parameters, are called spatial queries. For example, “What are the
names of all bookstores within five miles of the College of Computing building at
Georgia Tech?” is a spatial query. Whereas typical databases process numeric and
character data, additional functionality needs to be added for databases to process
spatial data types. A query such as “List all the customers located within twenty
miles of company headquarters” will require the processing of spatial data types
typically outside the scope of standard relational algebra and may involve consult-
ing an external geographic database that maps the company headquarters and each
customer to a 2-D map based on their address. Effectively, each customer will be
associated to a <latitude, longitude> position. A traditional B+-tree index based on
customers’ zip codes or other nonspatial attributes cannot be used to process this
query since traditional indexes are not capable of ordering multidimensional coor-
dinate data. Therefore, there is a special need for databases tailored for handling
spatial data and spatial queries.

Table 26.1 shows the common analytical operations involved in processing geo-
graphic or spatial data.25 Measurement operations are used to measure some

25List of GIS analysis operations as proposed in Albrecht (1996). 
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global properties of single objects (such as the area, the relative size of an object’s
parts, compactness, or symmetry), and to measure the relative position of different
objects in terms of distance and direction. Spatial analysis operations, which often
use statistical techniques, are used to uncover spatial relationships within and
among mapped data layers. An example would be to create a map—known as a
prediction map—that identifies the locations of likely customers for particular
products based on the historical sales and demographic information. Flow analysis
operations help in determining the shortest path between two points and also the
connectivity among nodes or regions in a graph. Location analysis aims to find if
the given set of points and lines lie within a given polygon (location). The process
involves generating a buffer around existing geographic features and then identify-
ing or selecting features based on whether they fall inside or outside the boundary
of the buffer. Digital terrain analysis is used to build three-dimensional models,
where the topography of a geographical location can be represented with an x, y, z
data model known as Digital Terrain (or Elevation) Model (DTM/DEM). The x and
y dimensions of a DTM represent the horizontal plane, and z represents spot
heights for the respective x, y coordinates. Such models can be used for analysis of
environmental data or during the design of engineering projects that require terrain
information. Spatial search allows a user to search for objects within a particular
spatial region. For example, thematic search allows us to search for objects related
to a particular theme or class, such as “Find all water bodies within 25 miles of
Atlanta” where the class is water.

There are also topological relationships among spatial objects. These are often used
in Boolean predicates to select objects based on their spatial relationships. For
example, if a city boundary is represented as a polygon and freeways are represented
as multilines, a condition such as “Find all freeways that go through Arlington,
Texas” would involve an intersects operation, to determine which freeways (lines)
intersect the city boundary (polygon).

26.3.2 Spatial Data Types and Models
This section briefly describes the common data types and models for storing spatial
data. Spatial data comes in three basic forms. These forms have become a de facto
standard due to their wide use in commercial systems.

■ Map Data26 includes various geographic or spatial features of objects in a
map, such as an object’s shape and the location of the object within the map.
The three basic types of features are points, lines, and polygons (or areas).
Points are used to represent spatial characteristics of objects whose locations
correspond to a single 2-d coordinate (x, y, or longitude/latitude) in the scale
of a particular application. Depending on the scale, some examples of point
objects could be buildings, cellular towers, or stationary vehicles. Moving

26These types of geographic data are based on ESRI’s guide to GIS. See
www.gis.com/implementing_gis/data/data_types.html

www.gis.com/implementing_gis/data/data_types.html
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vehicles and other moving objects can be represented by a sequence of point
locations that change over time. Lines represent objects having length, such
as roads or rivers, whose spatial characteristics can be approximated by a
sequence of connected lines. Polygons are used to represent spatial charac-
teristics of objects that have a boundary, such as countries, states, lakes, or
cities. Notice that some objects, such as buildings or cities, can be repre-
sented as either points or polygons, depending on the scale of detail.

■ Attribute data is the descriptive data that GIS systems associate with map
features. For example, suppose that a map contains features that represent
counties within a US state (such as Texas or Oregon). Attributes for each
county feature (object) could include population, largest city/town, area in
square miles, and so on. Other attribute data could be included for other fea-
tures in the map, such as states, cities, congressional districts, census tracts,
and so on.

■ Image data includes data such as satellite images and aerial photographs,
which are typically created by cameras. Objects of interest, such as buildings
and roads, can be identified and overlaid on these images. Images can also be
attributes of map features. One can add images to other map features so that
clicking on the feature would display the image. Aerial and satellite images
are typical examples of raster data.

Models of spatial information are sometimes grouped into two broad categories:
field and object. A spatial application (such as remote sensing or highway traffic con-
trol) is modeled using either a field- or an object-based model, depending on the
requirements and the traditional choice of model for the application. Field models
are often used to model spatial data that is continuous in nature, such as terrain ele-
vation, temperature data, and soil variation characteristics, whereas object models
have traditionally been used for applications such as transportation networks, land
parcels, buildings, and other objects that possess both spatial and non-spatial attrib-
utes.

26.3.3 Spatial Operators
Spatial operators are used to capture all the relevant geometric properties of objects
embedded in the physical space and the relations between them, as well as to 
perform spatial analysis. Operators are classified into three broad categories.

■ Topological operators. Topological properties are invariant when topologi-
cal transformations are applied. These properties do not change after trans-
formations like rotation, translation, or scaling. Topological operators are
hierarchically structured in several levels, where the base level offers opera-
tors the ability to check for detailed topological relations between regions
with a broad boundary, and the higher levels offer more abstract operators
that allow users to query uncertain spatial data independent of the underly-
ing geometric data model. Examples include open (region), close (region),
and inside (point, loop).
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■ Projective operators. Projective operators, such as convex hull, are used to
express predicates about the concavity/convexity of objects as well as other
spatial relations (for example, being inside the concavity of a given object).

■ Metric operators. Metric operators provide a more specific description of
the object’s geometry. They are used to measure some global properties of
single objects (such as the area, relative size of an object’s parts, compactness,
and symmetry), and to measure the relative position of different objects in
terms of distance and direction. Examples include length (arc) and distance
(point, point).

Dynamic Spatial Operators. The operations performed by the operators men-
tioned above are static, in the sense that the operands are not affected by the appli-
cation of the operation. For example, calculating the length of the curve has no
effect on the curve itself. Dynamic operations alter the objects upon which the
operations act. The three fundamental dynamic operations are create, destroy, and
update. A representative example of dynamic operations would be updating a spa-
tial object that can be subdivided into translate (shift position), rotate (change ori-
entation), scale up or down, reflect (produce a mirror image), and shear (deform).

Spatial Queries. Spatial queries are requests for spatial data that require the use
of spatial operations. The following categories illustrate three typical types of spatial
queries:

■ Range query. Finds the objects of a particular type that are within a given
spatial area or within a particular distance from a given location. (For exam-
ple, find all hospitals within the Metropolitan Atlanta city area, or find all
ambulances within five miles of an accident location.)

■ Nearest neighbor query. Finds an object of a particular type that is closest to
a given location. (For example, find the police car that is closest to the loca-
tion of crime.)

■ Spatial joins or overlays. Typically joins the objects of two types based on
some spatial condition, such as the objects intersecting or overlapping spa-
tially or being within a certain distance of one another. (For example, find all
townships located on a major highway between two cities or find all homes
that are within two miles of a lake.)

26.3.4 Spatial Data Indexing
A spatial index is used to organize objects into a set of buckets (which correspond

to pages of secondary memory), so that objects in a particular spatial region can be
easily located. Each bucket has a bucket region, a part of space containing all objects
stored in the bucket. The bucket regions are usually rectangles; for point data struc-
tures, these regions are disjoint and they partition the space so that each point
belongs to precisely one bucket. There are essentially two ways of providing a spatial
index.
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1. Specialized indexing structures that allow efficient search for data objects
based on spatial search operations are included in the database system. These
indexing structures would play a similar role to that performed by B+-tree
indexes in traditional database systems. Examples of these indexing struc-
tures are grid files and R-trees. Special types of spatial indexes, known as
spatial join indexes, can be used to speed up spatial join operations.

2. Instead of creating brand new indexing structures, the two-dimensional 
(2-d) spatial data is converted to single-dimensional (1-d) data, so that tra-
ditional indexing techniques (B+-tree) can be used. The algorithms 
for converting from 2-d to 1-d are known as space filling curves. We will 
not discuss these methods in detail (see the Selected Bibliography for further 
references).

We give an overview of some of the spatial indexing techniques next.

Grid Files. We introduced grid files for indexing of data on multiple attributes 
in Chapter 18. They can also be used for indexing 2-dimensional and higher n-
dimensional spatial data. The fixed-grid method divides an n-dimensional hyper-
space into equal size buckets. The data structure that implements the fixed grid is an
n-dimensional array. The objects whose spatial locations lie within a cell (totally or
partially) can be stored in a dynamic structure to handle overflows. This structure is
useful for uniformly distributed data like satellite imagery. However, the fixed-grid
structure is rigid, and its directory can be sparse and large.

R-Trees. The R-tree is a height-balanced tree, which is an extension of the B+-tree
for k-dimensions, where k > 1. For two dimensions (2-d), spatial objects are approx-
imated in the R-tree by their minimum bounding rectangle (MBR), which is the
smallest rectangle, with sides parallel to the coordinate system (x and y) axis, that
contains the object. R-trees are characterized by the following properties, which are
similar to the properties for B+-trees (see Section 18.3) but are adapted to 2-d spa-
tial objects. As in Section 18.3, we use M to indicate the maximum number of
entries that can fit in an R-tree node.

1. The structure of each index entry (or index record) in a leaf node is (I,
object-identifier), where I is the MBR for the spatial object whose identifier is
object-identifier.

2. Every node except the root node must be at least half full. Thus, a leaf node
that is not the root should contain m entries (I, object-identifier) where M/2
<= m <= M. Similarly, a non-leaf node that is not the root should contain m
entries (I, child-pointer) where M/2 <= m <= M, and I is the MBR that con-
tains the union of all the rectangles in the node pointed at by child-pointer.

3. All leaf nodes are at the same level, and the root node should have at least
two pointers unless it is a leaf node.

4. All MBRs have their sides parallel to the axes of the global coordinate system.
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Other spatial storage structures include quadtrees and their variations. Quadtrees
generally divide each space or subspace into equally sized areas, and proceed with
the subdivisions of each subspace to identify the positions of various objects.
Recently, many newer spatial access structures have been proposed, and this area
remains an active research area.

Spatial Join Index. A spatial join index precomputes a spatial join operation and
stores the pointers to the related object in an index structure. Join indexes improve
the performance of recurring join queries over tables that have low update rates.
Spatial join conditions are used to answer queries such as “Create a list of highway-
river combinations that cross.” The spatial join is used to identify and retrieve these
pairs of objects that satisfy the cross spatial relationship. Because computing the
results of spatial relationships is generally time consuming, the result can be com-
puted once and stored in a table that has the pairs of object identifiers (or tuple ids)
that satisfy the spatial relationship, which is essentially the join index.

A join index can be described by a bipartite graph G = (V1,V2,E), where V1 con-
tains the tuple ids of relation R, and V2 contains the tuple ids of relation S. Edge set
contains an edge (vr,vs) for vr in R and vs in S, if there is a tuple corresponding to
(vr,vs) in the join index. The bipartite graph models all of the related tuples as con-
nected vertices in the graphs. Spatial join indexes are used in operations (see Section
26.3.3) that involve computation of relationships among spatial objects.

26.3.5 Spatial Data Mining
Spatial data tends to be highly correlated. For example, people with similar charac-
teristics, occupations, and backgrounds tend to cluster together in the same neigh-
borhoods.

The three major spatial data mining techniques are spatial classification, spatial
association, and spatial clustering.

■ Spatial classification. The goal of classification is to estimate the value of an
attribute of a relation based on the value of the relation’s other attributes. An
example of the spatial classification problem is determining the locations of
nests in a wetland based on the value of other attributes (for example, vege-
tation durability and water depth); it is also called the location prediction
problem. Similarly, where to expect hotspots in crime activity is also a loca-
tion prediction problem.

■ Spatial association. Spatial association rules are defined in terms of spatial
predicates rather than items. A spatial association rule is of the form

P1 ^ P2 ^ ... ^ Pn ⇒ Q1 ^ Q2 ^ ... ^ Qm,

where at least one of the Pi’s or Q j’s is a spatial predicate. For example, the
rule

is_a(x, country) ^ touches(x, Mediterranean) ⇒ is_a (x, wine-exporter)
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(that is, a country that is adjacent to the Mediterranean Sea is typically a
wine exporter) is an example of an association rule, which will have a certain
support s and confidence c.27

Spatial colocation rules attempt to generalize association rules to point to collec-
tion data sets that are indexed by space. There are several crucial differences between
spatial and nonspatial associations including:

1. The notion of a transaction is absent in spatial situations, since data is
embedded in continuous space. Partitioning space into transactions would
lead to an overestimate or an underestimate of interest measures, for exam-
ple, support or confidence.

2. Size of item sets in spatial databases is small, that is, there are many fewer
items in the item set in a spatial situation than in a nonspatial situation.

In most instances, spatial items are a discrete version of continuous variables. For
example, in the United States income regions may be defined as regions where the
mean yearly income is within certain ranges, such as, below $40,000, from $40,000
to $100,000, and above $100,000.

■ Spatial Clustering attempts to group database objects so that the most sim-
ilar objects are in the same cluster, and objects in different clusters are as dis-
similar as possible. One application of spatial clustering is to group together
seismic events in order to determine earthquake faults. An example of a spa-
tial clustering algorithm is density-based clustering, which tries to find
clusters based on the density of data points in a region. These algorithms
treat clusters as dense regions of objects in the data space. Two variations of
these algorithms are density-based spatial clustering of applications with
noise (DBSCAN)28 and density-based clustering (DENCLUE).29 DBSCAN
is a density-based clustering algorithm because it finds a number of clusters
starting from the estimated density distribution of corresponding nodes.

26.3.6 Applications of Spatial Data
Spatial data management is useful in many disciplines, including geography, remote
sensing, urban planning, and natural resource management. Spatial database man-
agement is playing an important role in the solution of challenging scientific prob-
lems such as global climate change and genomics. Due to the spatial nature of
genome data, GIS and spatial database management systems have a large role to play
in the area of bioinformatics. Some of the typical applications include pattern
recognition (for example, to check if the topology of a particular gene in the
genome is found in any other sequence feature map in the database), genome

27Concepts of support and confidence for association rules are discussed as part of data mining in
Section 28.2.
28DBSCAN was proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu (1996).
29DENCLUE was proposed by Hinnenberg and Gabriel (2007).
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browser development, and visualization maps. Another important application area
of spatial data mining is the spatial outlier detection. A spatial outlier is a spatially
referenced object whose nonspatial attribute values are significantly different from
those of other spatially referenced objects in its spatial neighborhood. For example,
if a neighborhood of older houses has just one brand-new house, that house would
be an outlier based on the nonspatial attribute ‘house_age’. Detecting spatial outliers
is useful in many applications of geographic information systems and spatial data-
bases. These application domains include transportation, ecology, public safety,
public health, climatology, and location-based services.

26.4 Multimedia Database Concepts
Multimedia databases provide features that allow users to store and query different
types of multimedia information, which includes images (such as photos or draw-
ings), video clips (such as movies, newsreels, or home videos), audio clips (such as
songs, phone messages, or speeches), and documents (such as books or articles). The
main types of database queries that are needed involve locating multimedia sources
that contain certain objects of interest. For example, one may want to locate all
video clips in a video database that include a certain person, say Michael Jackson.
One may also want to retrieve video clips based on certain activities included in
them, such as video clips where a soccer goal is scored by a certain player or team.

The above types of queries are referred to as content-based retrieval, because the
multimedia source is being retrieved based on its containing certain objects or
activities. Hence, a multimedia database must use some model to organize and
index the multimedia sources based on their contents. Identifying the contents of
multimedia sources is a difficult and time-consuming task. There are two main
approaches. The first is based on automatic analysis of the multimedia sources to
identify certain mathematical characteristics of their contents. This approach uses
different techniques depending on the type of multimedia source (image, video,
audio, or text). The second approach depends on manual identification of the
objects and activities of interest in each multimedia source and on using this infor-
mation to index the sources. This approach can be applied to all multimedia
sources, but it requires a manual preprocessing phase where a person has to scan
each multimedia source to identify and catalog the objects and activities it contains
so that they can be used to index the sources.

In the first part of this section, we will briefly discuss some of the characteristics of
each type of multimedia source—images, video, audio, and text/documents. Then
we will discuss approaches for automatic analysis of images followed by the prob-
lem of object recognition in images. We end this section with some remarks on ana-
lyzing audio sources.

An image is typically stored either in raw form as a set of pixel or cell values, or in
compressed form to save space. The image shape descriptor describes the geometric
shape of the raw image, which is typically a rectangle of cells of a certain width and
height. Hence, each image can be represented by an m by n grid of cells. Each cell
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contains a pixel value that describes the cell content. In black-and-white images,
pixels can be one bit. In gray scale or color images, a pixel is multiple bits. Because
images may require large amounts of space, they are often stored in compressed
form. Compression standards, such as GIF, JPEG, or MPEG, use various mathemat-
ical transformations to reduce the number of cells stored but still maintain the main
image characteristics. Applicable mathematical transforms include Discrete Fourier
Transform (DFT), Discrete Cosine Transform (DCT), and wavelet transforms.

To identify objects of interest in an image, the image is typically divided into homo-
geneous segments using a homogeneity predicate. For example, in a color image, adja-
cent cells that have similar pixel values are grouped into a segment. The homogeneity
predicate defines conditions for automatically grouping those cells. Segmentation
and compression can hence identify the main characteristics of an image.

A typical image database query would be to find images in the database that are
similar to a given image. The given image could be an isolated segment that con-
tains, say, a pattern of interest, and the query is to locate other images that contain
that same pattern. There are two main techniques for this type of search. The first
approach uses a distance function to compare the given image with the stored
images and their segments. If the distance value returned is small, the probability of
a match is high. Indexes can be created to group stored images that are close in the
distance metric so as to limit the search space. The second approach, called the
transformation approach, measures image similarity by having a small number of
transformations that can change one image’s cells to match the other image.
Transformations include rotations, translations, and scaling. Although the transfor-
mation approach is more general, it is also more time-consuming and difficult.

A video source is typically represented as a sequence of frames, where each frame is
a still image. However, rather than identifying the objects and activities in every
individual frame, the video is divided into video segments, where each segment
comprises a sequence of contiguous frames that includes the same objects/activities.
Each segment is identified by its starting and ending frames. The objects and activi-
ties identified in each video segment can be used to index the segments. An index-
ing technique called frame segment trees has been proposed for video indexing. The
index includes both objects, such as persons, houses, and cars, as well as activities,
such as a person delivering a speech or two people talking. Videos are also often
compressed using standards such as MPEG.

Audio sources include stored recorded messages, such as speeches, class presenta-
tions, or even surveillance recordings of phone messages or conversations by law
enforcement. Here, discrete transforms can be used to identify the main character-
istics of a certain person’s voice in order to have similarity-based indexing and
retrieval. We will briefly comment on their analysis in Section 26.4.4.

A text/document source is basically the full text of some article, book, or magazine.
These sources are typically indexed by identifying the keywords that appear in the
text and their relative frequencies. However, filler words or common words called
stopwords are eliminated from the process. Because there can be many keywords
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when attempting to index a collection of documents, techniques have been devel-
oped to reduce the number of keywords to those that are most relevant to the col-
lection. A dimensionality reduction technique called singular value decompositions
(SVD), which is based on matrix transformations, can be used for this purpose. An
indexing technique called telescoping vector trees (TV-trees), can then be used to
group similar documents. Chapter 27 discusses document processing in detail.

26.4.1 Automatic Analysis of Images
Analysis of multimedia sources is critical to support any type of query or search
interface. We need to represent multimedia source data such as images in terms of
features that would enable us to define similarity. The work done so far in this area
uses low-level visual features such as color, texture, and shape, which are directly
related to the perceptual aspects of image content. These features are easy to extract
and represent, and it is convenient to design similarity measures based on their sta-
tistical properties.

Color is one of the most widely used visual features in content-based image
retrieval since it does not depend upon image size or orientation. Retrieval based on
color similarity is mainly done by computing a color histogram for each image that
identifies the proportion of pixels within an image for the three color channels (red,
green, blue—RGB). However, RGB representation is affected by the orientation of
the object with respect to illumination and camera direction. Therefore, current
image retrieval techniques compute color histograms using competing invariant
representations such as HSV (hue, saturation, value). HSV describes colors as
points in a cylinder whose central axis ranges from black at the bottom to white at
the top with neutral colors between them. The angle around the axis corresponds to
the hue, the distance from the axis corresponds to the saturation, and the distance
along the axis corresponds to the value (brightness).

Texture refers to the patterns in an image that present the properties of homogene-
ity that do not result from the presence of a single color or intensity value.
Examples of texture classes are rough and silky. Examples of textures that can be
identified include pressed calf leather, straw matting, cotton canvas, and so on. Just
as pictures are represented by arrays of pixels (picture elements), textures are repre-
sented by arrays of texels (texture elements). These textures are then placed into a
number of sets, depending on how many textures are identified in the image. These
sets not only contain the texture definition but also indicate where in the image the
texture is located. Texture identification is primarily done by modeling it as a two-
dimensional, gray-level variation. The relative brightness of pairs of pixels is com-
puted to estimate the degree of contrast, regularity, coarseness, and directionality.

Shape refers to the shape of a region within an image. It is generally determined by
applying segmentation or edge detection to an image. Segmentation is a region-
based approach that uses an entire region (sets of pixels), whereas edge detection is
a boundary-based approach that uses only the outer boundary characteristics of
entities. Shape representation is typically required to be invariant to translation,
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rotation, and scaling. Some well-known methods for shape representation include
Fourier descriptors and moment invariants.

26.4.2 Object Recognition in Images
Object recognition is the task of identifying real-world objects in an image or a
video sequence. The system must be able to identify the object even when the
images of the object vary in viewpoints, size, scale, or even when they are rotated or
translated. Some approaches have been developed to divide the original image into
regions based on similarity of contiguous pixels. Thus, in a given image showing a
tiger in the jungle, a tiger subimage may be detected against the background of the
jungle, and when compared with a set of training images, it may be tagged as a tiger.

The representation of the multimedia object in an object model is extremely impor-
tant. One approach is to divide the image into homogeneous segments using a
homogeneous predicate. For example, in a colored image, adjacent cells that have
similar pixel values are grouped into a segment. The homogeneity predicate defines
conditions for automatically grouping those cells. Segmentation and compression
can hence identify the main characteristics of an image. Another approach finds
measurements of the object that are invariant to transformations. It is impossible to
keep a database of examples of all the different transformations of an image. To deal
with this, object recognition approaches find interesting points (or features) in an
image that are invariant to transformations.

An important contribution to this field was made by Lowe,30 who used scale-
invariant features from images to perform reliable object recognition. This
approach is called scale-invariant feature transform (SIFT). The SIFT features are
invariant to image scaling and rotation, and partially invariant to change in illumi-
nation and 3D camera viewpoint. They are well localized in both the spatial and
frequency domains, reducing the probability of disruption by occlusion, clutter, or
noise. In addition, the features are highly distinctive, which allows a single feature
to be correctly matched with high probability against a large database of features,
providing a basis for object and scene recognition.

For image matching and recognition, SIFT features (also known as keypoint
features) are first extracted from a set of reference images and stored in a database.
Object recognition is then performed by comparing each feature from the new
image with the features stored in the database and finding candidate matching fea-
tures based on the Euclidean distance of their feature vectors. Since the keypoint
features are highly distinctive, a single feature can be correctly matched with good
probability in a large database of features.

In addition to SIFT, there are a number of competing methods available for object
recognition under clutter or partial occlusion. For example, RIFT, a rotation invari-
ant generalization of SIFT, identifies groups of local affine regions (image features

30See Lowe (2004), “Distinctive Image Features from Scale-Invariant Keypoints.” 
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having a characteristic appearance and elliptical shape) that remain approximately
affinely rigid across a range of views of an object, and across multiple instances of
the same object class.

26.4.3 Semantic Tagging of Images
The notion of implicit tagging is an important one for image recognition and com-
parison. Multiple tags may attach to an image or a subimage: for instance, in the
example we referred to above, tags such as “tiger,” “jungle,” “green,” and “stripes”
may be associated with that image. Most image search techniques retrieve images
based on user-supplied tags that are often not very accurate or comprehensive. To
improve search quality, a number of recent systems aim at automated generation of
these image tags. In case of multimedia data, most of its semantics is present in its
content. These systems use image-processing and statistical-modeling techniques to
analyze image content to generate accurate annotation tags that can then be used to
retrieve images by content. Since different annotation schemes will use different
vocabularies to annotate images, the quality of image retrieval will be poor. To solve
this problem, recent research techniques have proposed the use of concept hierar-
chies, taxonomies, or ontologies using OWL (Web Ontology Language), in which
terms and their relationships are clearly defined. These can be used to infer higher-
level concepts based on tags. Concepts like “sky” and “grass” may be further divided
into “clear sky” and “cloudy sky” or “dry grass” and “green grass” in such a taxon-
omy. These approaches generally come under semantic tagging and can be used in
conjunction with the above feature-analysis and object-identification strategies.

26.4.4 Analysis of Audio Data Sources
Audio sources are broadly classified into speech, music, and other audio data. Each
of these are significantly different from the other, hence different types of audio data
are treated differently. Audio data must be digitized before it can be processed and
stored. Indexing and retrieval of audio data is arguably the toughest among all types
of media, because like video, it is continuous in time and does not have easily mea-
surable characteristics such as text. Clarity of sound recordings is easy to perceive
humanly but is hard to quantify for machine learning. Interestingly, speech data
often uses speech recognition techniques to aid the actual audio content, as this can
make indexing this data a lot easier and more accurate. This is sometimes referred to
as text-based indexing of audio data. The speech metadata is typically content
dependent, in that the metadata is generated from the audio content, for example,
the length of the speech, the number of speakers, and so on. However, some of the
metadata might be independent of the actual content, such as the length of the
speech and the format in which the data is stored. Music indexing, on the other
hand, is done based on the statistical analysis of the audio signal, also known as
content-based indexing. Content-based indexing often makes use of the key features
of sound: intensity, pitch, timbre, and rhythm. It is possible to compare different
pieces of audio data and retrieve information from them based on the calculation of
certain features, as well as application of certain transforms.
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26.5 Introduction to Deductive Databases

26.5.1 Overview of Deductive Databases
In a deductive database system we typically specify rules through a declarative lan-
guage—a language in which we specify what to achieve rather than how to achieve
it. An inference engine (or deduction mechanism) within the system can deduce
new facts from the database by interpreting these rules. The model used for deduc-
tive databases is closely related to the relational data model, and particularly to the
domain relational calculus formalism (see Section 6.6). It is also related to the field
of logic programming and the Prolog language. The deductive database work
based on logic has used Prolog as a starting point. A variation of Prolog called
Datalog is used to define rules declaratively in conjunction with an existing set of
relations, which are themselves treated as literals in the language. Although the lan-
guage structure of Datalog resembles that of Prolog, its operational semantics—that
is, how a Datalog program is executed—is still different.

A deductive database uses two main types of specifications: facts and rules. Facts are
specified in a manner similar to the way relations are specified, except that it is not
necessary to include the attribute names. Recall that a tuple in a relation describes
some real-world fact whose meaning is partly determined by the attribute names. In
a deductive database, the meaning of an attribute value in a tuple is determined
solely by its position within the tuple. Rules are somewhat similar to relational
views. They specify virtual relations that are not actually stored but that can be
formed from the facts by applying inference mechanisms based on the rule specifi-
cations. The main difference between rules and views is that rules may involve
recursion and hence may yield virtual relations that cannot be defined in terms of
basic relational views.

The evaluation of Prolog programs is based on a technique called backward chain-
ing, which involves a top-down evaluation of goals. In the deductive databases that
use Datalog, attention has been devoted to handling large volumes of data stored in
a relational database. Hence, evaluation techniques have been devised that resemble
those for a bottom-up evaluation. Prolog suffers from the limitation that the order
of specification of facts and rules is significant in evaluation; moreover, the order of
literals (defined in Section 26.5.3) within a rule is significant. The execution tech-
niques for Datalog programs attempt to circumvent these problems.

26.5.2 Prolog/Datalog Notation
The notation used in Prolog/Datalog is based on providing predicates with unique
names. A predicate has an implicit meaning, which is suggested by the predicate
name, and a fixed number of arguments. If the arguments are all constant values,
the predicate simply states that a certain fact is true. If, on the other hand, the pred-
icate has variables as arguments, it is either considered as a query or as part of a rule
or constraint. In our discussion, we adopt the Prolog convention that all constant
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Facts
SUPERVISE(franklin, john).
SUPERVISE(franklin, ramesh).
SUPERVISE(franklin, joyce).
SUPERVISE(jennifer, alicia).
SUPERVISE(jennifer, ahmad).
SUPERVISE(james, franklin).
SUPERVISE(james, jennifer).
. . .

Rules
SUPERIOR(X, Y ) :– SUPERVISE(X, Y ).
SUPERIOR(X, Y ) :– SUPERVISE(X, Z ), SUPERIOR(Z, Y ).
SUBORDINATE(X, Y ) :– SUPERIOR(Y, X ).

Queries
SUPERIOR(james, Y )?
SUPERIOR(james, joyce)?

joyceramesh

franklin

james(b)(a)

john ahmad

jennifer

alicia

Figure 26.11
(a) Prolog notation. 
(b) The supervisory tree.

values in a predicate are either numeric or character strings; they are represented as
identifiers (or names) that start with a lowercase letter, whereas variable names
always start with an uppercase letter.

Consider the example shown in Figure 26.11, which is based on the relational data-
base in Figure 3.6, but in a much simplified form. There are three predicate names:
supervise, superior, and subordinate. The SUPERVISE predicate is defined via a set of
facts, each of which has two arguments: a supervisor name, followed by the name of
a direct supervisee (subordinate) of that supervisor. These facts correspond to the
actual data that is stored in the database, and they can be considered as constituting
a set of tuples in a relation SUPERVISE with two attributes whose schema is

SUPERVISE(Supervisor, Supervisee)

Thus, SUPERVISE(X, Y ) states the fact that X supervises Y. Notice the omission of
the attribute names in the Prolog notation. Attribute names are only represented by
virtue of the position of each argument in a predicate: the first argument represents
the supervisor, and the second argument represents a direct subordinate.

The other two predicate names are defined by rules. The main contributions of
deductive databases are the ability to specify recursive rules and to provide a frame-
work for inferring new information based on the specified rules. A rule is of the
form head :– body, where :– is read as if and only if. A rule usually has a single pred-
icate to the left of the :– symbol—called the head or left-hand side (LHS) or
conclusion of the rule—and one or more predicates to the right of the :– symbol—
called the body or right-hand side (RHS) or premise(s) of the rule. A predicate
with constants as arguments is said to be ground; we also refer to it as an
instantiated predicate. The arguments of the predicates that appear in a rule typi-
cally include a number of variable symbols, although predicates can also contain
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constants as arguments. A rule specifies that, if a particular assignment or binding
of constant values to the variables in the body (RHS predicates) makes all the RHS
predicates true, it also makes the head (LHS predicate) true by using the same
assignment of constant values to variables. Hence, a rule provides us with a way of
generating new facts that are instantiations of the head of the rule. These new facts
are based on facts that already exist, corresponding to the instantiations (or bind-
ings) of predicates in the body of the rule. Notice that by listing multiple predicates
in the body of a rule we implicitly apply the logical AND operator to these predi-
cates. Hence, the commas between the RHS predicates may be read as meaning and.

Consider the definition of the predicate SUPERIOR in Figure 26.11, whose first
argument is an employee name and whose second argument is an employee who is
either a direct or an indirect subordinate of the first employee. By indirect subordi-
nate, we mean the subordinate of some subordinate down to any number of levels.
Thus SUPERIOR(X, Y) stands for the fact that X is a superior of Y through direct or
indirect supervision. We can write two rules that together specify the meaning of the
new predicate. The first rule under Rules in the figure states that for every value of X
and Y, if SUPERVISE(X, Y)—the rule body—is true, then SUPERIOR(X, Y)—the
rule head—is also true, since Y would be a direct subordinate of X (at one level
down). This rule can be used to generate all direct superior/subordinate relation-
ships from the facts that define the SUPERVISE predicate. The second recursive rule
states that if SUPERVISE(X, Z) and SUPERIOR(Z, Y ) are both true, then
SUPERIOR(X, Y) is also true. This is an example of a recursive rule, where one of
the rule body predicates in the RHS is the same as the rule head predicate in the
LHS. In general, the rule body defines a number of premises such that if they are all
true, we can deduce that the conclusion in the rule head is also true. Notice that if
we have two (or more) rules with the same head (LHS predicate), it is equivalent to
saying that the predicate is true (that is, that it can be instantiated) if either one of
the bodies is true; hence, it is equivalent to a logical OR operation. For example, if
we have two rules X :– Y and X :– Z, they are equivalent to a rule X :– Y OR Z. The
latter form is not used in deductive systems, however, because it is not in the stan-
dard form of rule, called a Horn clause, as we discuss in Section 26.5.4.

A Prolog system contains a number of built-in predicates that the system can inter-
pret directly. These typically include the equality comparison operator =(X, Y),
which returns true if X and Y are identical and can also be written as X=Y by using
the standard infix notation.31 Other comparison operators for numbers, such as <,
<=, >, and >=, can be treated as binary predicates. Arithmetic functions such as +,
–, *, and / can be used as arguments in predicates in Prolog. In contrast, Datalog (in
its basic form) does not allow functions such as arithmetic operations as arguments;
indeed, this is one of the main differences between Prolog and Datalog. However,
extensions to Datalog have been proposed that do include functions.

31A Prolog system typically has a number of different equality predicates that have different interpreta-
tions.
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A query typically involves a predicate symbol with some variable arguments, and its
meaning (or answer) is to deduce all the different constant combinations that, when
bound (assigned) to the variables, can make the predicate true. For example, the
first query in Figure 26.11 requests the names of all subordinates of james at any
level. A different type of query, which has only constant symbols as arguments,
returns either a true or a false result, depending on whether the arguments provided
can be deduced from the facts and rules. For example, the second query in Figure
26.11 returns true, since SUPERIOR(james, joyce) can be deduced.

26.5.3 Datalog Notation
In Datalog, as in other logic-based languages, a program is built from basic objects
called atomic formulas. It is customary to define the syntax of logic-based lan-
guages by describing the syntax of atomic formulas and identifying how they can be
combined to form a program. In Datalog, atomic formulas are literals of the form
p(a1, a2, ..., an), where p is the predicate name and n is the number of arguments for
predicate p. Different predicate symbols can have different numbers of arguments,
and the number of arguments n of predicate p is sometimes called the arity or
degree of p. The arguments can be either constant values or variable names. As
mentioned earlier, we use the convention that constant values either are numeric or
start with a lowercase character, whereas variable names always start with an
uppercase character.

A number of built-in predicates are included in Datalog, which can also be used to
construct atomic formulas. The built-in predicates are of two main types: the binary
comparison predicates < (less), <= (less_or_equal), > (greater), and >=
(greater_or_equal) over ordered domains; and the comparison predicates = (equal)
and /= (not_equal) over ordered or unordered domains. These can be used as binary
predicates with the same functional syntax as other predicates—for example, by
writing less(X, 3)—or they can be specified by using the customary infix notation
X<3. Note that because the domains of these predicates are potentially infinite, they
should be used with care in rule definitions. For example, the predicate greater(X,
3), if used alone, generates an infinite set of values for X that satisfy the predicate (all
integer numbers greater than 3).

A literal is either an atomic formula as defined earlier—called a positive literal—or
an atomic formula preceded by not. The latter is a negated atomic formula, called a
negative literal. Datalog programs can be considered to be a subset of the predicate
calculus formulas, which are somewhat similar to the formulas of the domain rela-
tional calculus (see Section 6.7). In Datalog, however, these formulas are first con-
verted into what is known as clausal form before they are expressed in Datalog, and
only formulas given in a restricted clausal form, called Horn clauses,32 can be used in
Datalog.

32Named after the mathematician Alfred Horn.
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26.5.4 Clausal Form and Horn Clauses
Recall from Section 6.6 that a formula in the relational calculus is a condition that
includes predicates called atoms (based on relation names). Additionally, a formula
can have quantifiers—namely, the universal quantifier (for all) and the existential
quantifier (there exists). In clausal form, a formula must be transformed into
another formula with the following characteristics:

■ All variables in the formula are universally quantified. Hence, it is not neces-
sary to include the universal quantifiers (for all) explicitly; the quantifiers are
removed, and all variables in the formula are implicitly quantified by the uni-
versal quantifier.

■ In clausal form, the formula is made up of a number of clauses, where each
clause is composed of a number of literals connected by OR logical connec-
tives only. Hence, each clause is a disjunction of literals.

■ The clauses themselves are connected by AND logical connectives only, to
form a formula. Hence, the clausal form of a formula is a conjunction of
clauses.

It can be shown that any formula can be converted into clausal form. For our pur-
poses, we are mainly interested in the form of the individual clauses, each of which
is a disjunction of literals. Recall that literals can be positive literals or negative liter-
als. Consider a clause of the form:

NOT(P1) OR NOT(P2) OR ... OR NOT(Pn) OR Q1 OR Q2 OR ... OR Qm (1)

This clause has n negative literals and m positive literals. Such a clause can be trans-
formed into the following equivalent logical formula:

P1 AND P2 AND ... AND Pn ⇒ Q1 OR Q2 OR ... OR Qm (2)

where ⇒ is the implies symbol. The formulas (1) and (2) are equivalent, meaning
that their truth values are always the same. This is the case because if all the Pi liter-
als (i = 1, 2, ..., n) are true, the formula (2) is true only if at least one of the Qi’s is
true, which is the meaning of the ⇒ (implies) symbol. For formula (1), if all the Pi
literals (i = 1, 2, ..., n) are true, their negations are all false; so in this case formula
(1) is true only if at least one of the Qi’s is true. In Datalog, rules are expressed as a
restricted form of clauses called Horn clauses, in which a clause can contain at most
one positive literal. Hence, a Horn clause is either of the form

NOT (P1) OR NOT(P2) OR ... OR NOT(Pn) OR Q (3)

or of the form

NOT (P1) OR NOT(P2) OR ... OR NOT(Pn) (4)

The Horn clause in (3) can be transformed into the clause

P1 AND P2 AND ... AND Pn ⇒ Q (5)

which is written in Datalog as the following rule:

Q :– P1, P2, ..., Pn. (6)
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1. SUPERIOR(X, Y ) :–  SUPERVISE(X, Y ). (rule 1)
2. SUPERIOR(X, Y ) :–  SUPERVISE(X, Z ), SUPERIOR(Z, Y ). (rule 2)
3. SUPERVISE(jennifer, ahmad). (ground axiom, given)
4. SUPERVISE(james, jennifer). (ground axiom, given)
5. SUPERIOR(jennifer, ahmad). (apply rule 1 on 3)
6. SUPERIOR(james, ahmad). (apply rule 2 on 4 and 5)

Figure 26.12
Proving a new fact.

The Horn clause in (4) can be transformed into

P1 AND P2 AND ... AND Pn ⇒ (7)

which is written in Datalog as follows:

P1, P2, ..., Pn. (8)

A Datalog rule, as in (6), is hence a Horn clause, and its meaning, based on formula
(5), is that if the predicates P1 AND P2 AND ... AND Pn are all true for a particular
binding to their variable arguments, then Q is also true and can hence be inferred.
The Datalog expression (8) can be considered as an integrity constraint, where all
the predicates must be true to satisfy the query.

In general, a query in Datalog consists of two components:

■ A Datalog program, which is a finite set of rules

■ A literal P(X1, X2, ..., Xn), where each Xi is a variable or a constant

A Prolog or Datalog system has an internal inference engine that can be used to
process and compute the results of such queries. Prolog inference engines typically
return one result to the query (that is, one set of values for the variables in the
query) at a time and must be prompted to return additional results. On the con-
trary, Datalog returns results set-at-a-time.

26.5.5 Interpretations of Rules
There are two main alternatives for interpreting the theoretical meaning of rules:
proof-theoretic and model-theoretic. In practical systems, the inference mechanism
within a system defines the exact interpretation, which may not coincide with either
of the two theoretical interpretations. The inference mechanism is a computational
procedure and hence provides a computational interpretation of the meaning of
rules. In this section, first we discuss the two theoretical interpretations. Then we
briefly discuss inference mechanisms as a way of defining the meaning of rules.

In the proof-theoretic interpretation of rules, we consider the facts and rules to be
true statements, or axioms. Ground axioms contain no variables. The facts are
ground axioms that are given to be true. Rules are called deductive axioms, since
they can be used to deduce new facts. The deductive axioms can be used to con-
struct proofs that derive new facts from existing facts. For example, Figure 26.12
shows how to prove the fact SUPERIOR(james, ahmad) from the rules and facts
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given in Figure 26.11. The proof-theoretic interpretation gives us a procedural or
computational approach for computing an answer to the Datalog query. The
process of proving whether a certain fact (theorem) holds is known as theorem
proving.

The second type of interpretation is called the model-theoretic interpretation.
Here, given a finite or an infinite domain of constant values,33 we assign to a predi-
cate every possible combination of values as arguments. We must then determine
whether the predicate is true or false. In general, it is sufficient to specify the combi-
nations of arguments that make the predicate true, and to state that all other combi-
nations make the predicate false. If this is done for every predicate, it is called an
interpretation of the set of predicates. For example, consider the interpretation
shown in Figure 26.13 for the predicates SUPERVISE and SUPERIOR. This interpre-
tation assigns a truth value (true or false) to every possible combination of argu-
ment values (from a finite domain) for the two predicates.

An interpretation is called a model for a specific set of rules if those rules are always
true under that interpretation; that is, for any values assigned to the variables in the
rules, the head of the rules is true when we substitute the truth values assigned to
the predicates in the body of the rule by that interpretation. Hence, whenever a par-
ticular substitution (binding) to the variables in the rules is applied, if all the predi-
cates in the body of a rule are true under the interpretation, the predicate in the
head of the rule must also be true. The interpretation shown in Figure 26.13 is a
model for the two rules shown, since it can never cause the rules to be violated.
Notice that a rule is violated if a particular binding of constants to the variables
makes all the predicates in the rule body true but makes the predicate in the rule
head false. For example, if SUPERVISE(a, b) and SUPERIOR(b, c) are both true
under some interpretation, but SUPERIOR(a, c) is not true, the interpretation can-
not be a model for the recursive rule:

SUPERIOR(X, Y) :– SUPERVISE(X, Z), SUPERIOR(Z, Y)

In the model-theoretic approach, the meaning of the rules is established by provid-
ing a model for these rules. A model is called a minimal model for a set of rules if
we cannot change any fact from true to false and still get a model for these rules. For
example, consider the interpretation in Figure 26.13, and assume that the
SUPERVISE predicate is defined by a set of known facts, whereas the SUPERIOR
predicate is defined as an interpretation (model) for the rules. Suppose that we add
the predicate SUPERIOR(james, bob) to the true predicates. This remains a model
for the rules shown, but it is not a minimal model, since changing the truth value of
SUPERIOR(james,bob) from true to false still provides us with a model for the rules.
The model shown in Figure 26.13 is the minimal model for the set of facts that are
defined by the SUPERVISE predicate.

In general, the minimal model that corresponds to a given set of facts in the model-
theoretic interpretation should be the same as the facts generated by the proof-

33The most commonly chosen domain is finite and is called the Herbrand Universe.
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Rules
SUPERIOR(X, Y ) :–  SUPERVISE(X, Y ).
SUPERIOR(X, Y ) :–  SUPERVISE(X, Z ), SUPERIOR(Z, Y ).

Interpretation

Known Facts:
SUPERVISE(franklin, john) is true.
SUPERVISE(franklin, ramesh) is true.
SUPERVISE(franklin, joyce) is true.
SUPERVISE(jennifer, alicia) is true.
SUPERVISE(jennifer, ahmad) is true.
SUPERVISE(james, franklin) is true.
SUPERVISE(james, jennifer) is true.
SUPERVISE(X, Y ) is false for all other possible (X, Y ) combinations

Derived Facts:
SUPERIOR(franklin, john) is true.
SUPERIOR(franklin, ramesh) is true.
SUPERIOR(franklin, joyce) is true.
SUPERIOR(jennifer, alicia) is true.
SUPERIOR(jennifer, ahmad) is true.
SUPERIOR(james, franklin) is true.
SUPERIOR(james, jennifer) is true.
SUPERIOR(james, john) is true.
SUPERIOR(james, ramesh) is true.
SUPERIOR(james, joyce) is true.
SUPERIOR(james, alicia) is true.
SUPERIOR(james, ahmad) is true.
SUPERIOR(X, Y ) is false for all other possible (X, Y ) combinations

Figure 26.13
An interpretation that
is a minimal model.

theoretic interpretation for the same original set of ground and deductive axioms.
However, this is generally true only for rules with a simple structure. Once we allow
negation in the specification of rules, the correspondence between interpretations
does not hold. In fact, with negation, numerous minimal models are possible for a
given set of facts.

A third approach to interpreting the meaning of rules involves defining an inference
mechanism that is used by the system to deduce facts from the rules. This inference
mechanism would define a computational interpretation to the meaning of the
rules. The Prolog logic programming language uses its inference mechanism to
define the meaning of the rules and facts in a Prolog program. Not all Prolog pro-
grams correspond to the proof-theoretic or model-theoretic interpretations; it
depends on the type of rules in the program. However, for many simple Prolog pro-
grams, the Prolog inference mechanism infers the facts that correspond either to the
proof-theoretic interpretation or to a minimal model under the model-theoretic
interpretation.
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EMPLOYEE(john). MALE(john).
EMPLOYEE(franklin). MALE(franklin).
EMPLOYEE(aIicia). MALE(ramesh).
EMPLOYEE(jennifer). MALE(ahmad).
EMPLOYEE(ramesh). MALE(james).
EMPLOYEE(joyce).
EMPLOYEE(ahmad). FEMALE(alicia).
EMPLOYEE(james). FEMALE(jennifer).

FEMALE(joyce).
SALARY(john, 30000).
SALARY(franklin, 40000). PROJECT(productx).
SALARY(alicia, 25000). PROJECT(producty).
SALARY(jennifer, 43000). PROJECT(productz).
SALARY(ramesh, 38000). PROJECT(computerization).
SALARY(joyce, 25000). PROJECT(reorganization).
SALARY(ahmad, 25000). PROJECT(newbenefits).
SALARY(james, 55000).

WORKS_ON(john, productx, 32).
DEPARTMENT(john, research). WORKS_ON(john, producty, 8).
DEPARTMENT(franklin, research). WORKS_ON(ramesh, productz, 40).
DEPARTMENT(alicia, administration). WORKS_ON(joyce, productx, 20).
DEPARTMENT(jennifer, administration). WORKS_ON(joyce, producty, 20).
DEPARTMENT(ramesh, research). WORKS_ON(franklin, producty, 10).
DEPARTMENT(joyce, research). WORKS_ON(franklin, productz, 10).
DEPARTMENT(ahmad, administration). WORKS_ON(franklin, computerization, 10).
DEPARTMENT(james, headquarters). WORKS_ON(franklin, reorganization, 10).

WORKS_ON(alicia, newbenefits, 30).
SUPERVISE(franklln, john). WORKS_ON(alicia, computerization, 10).
SUPERVISE(franklln, ramesh) WORKS_ON(ahmad, computerization, 35).
SUPERVISE(frankin , joyce). WORKS_ON(ahmad, newbenefits, 5).
SUPERVISE(jennifer, aIicia). WORKS_ON(jennifer, newbenefits, 20).
SUPERVISE(jennifer, ahmad). WORKS_ON(jennifer, reorganization, 15).
SUPERVISE(james, franklin). WORKS_ON(james, reorganization, 10).
SUPERVISE(james, jennifer).

Figure 26.14
Fact predicates for
part of the database
from Figure 3.6.

26.5.6 Datalog Programs and Their Safety
There are two main methods of defining the truth values of predicates in actual
Datalog programs. Fact-defined predicates (or relations) are defined by listing all
the combinations of values (the tuples) that make the predicate true. These corre-
spond to base relations whose contents are stored in a database system. Figure 26.14
shows the fact-defined predicates EMPLOYEE, MALE, FEMALE, DEPARTMENT,
SUPERVISE, PROJECT, and WORKS_ON, which correspond to part of the relational
database shown in Figure 3.6. Rule-defined predicates (or views) are defined by
being the head (LHS) of one or more Datalog rules; they correspond to virtual rela-
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SUPERIOR(X, Y ) :– SUPERVISE(X, Y ).
SUPERIOR(X, Y ) :– SUPERVISE(X, Z ), SUPERIOR(Z, Y ).

SUBORDINATE(X, Y ) :– SUPERIOR(Y, X ).

SUPERVISOR(X ) :– EMPLOYEE(X ), SUPERVISE(X, Y ).
OVER_40K_EMP(X ) :– EMPLOYEE(X ), SALARY(X, Y ), Y >= 40000.
UNDER_40K_SUPERVISOR(X ) :– SUPERVISOR(X ), NOT(OVER_40_K_EMP(X )).
MAIN_PRODUCTX_EMP(X ) :– EMPLOYEE(X ), WORKS_ON(X, productx, Y ), Y >=20.
PRESIDENT(X ) :– EMPLOYEE(X), NOT(SUPERVISE(Y, X ) ).

Figure 26.15
Rule-defined predicates.

tions whose contents can be inferred by the inference engine. Figure 26.15 shows a
number of rule-defined predicates.

A program or a rule is said to be safe if it generates a finite set of facts. The general
theoretical problem of determining whether a set of rules is safe is undecidable.
However, one can determine the safety of restricted forms of rules. For example, the
rules shown in Figure 26.16 are safe. One situation where we get unsafe rules that
can generate an infinite number of facts arises when one of the variables in the rule
can range over an infinite domain of values, and that variable is not limited to rang-
ing over a finite relation. For example, consider the following rule:

BIG_SALARY(Y ) :– Y>60000

Here, we can get an infinite result if Y ranges over all possible integers. But suppose
that we change the rule as follows:

BIG_SALARY(Y ) :– EMPLOYEE(X), Salary(X, Y ), Y>60000

In the second rule, the result is not infinite, since the values that Y can be bound to
are now restricted to values that are the salary of some employee in the database—
presumably, a finite set of values. We can also rewrite the rule as follows:

BIG_SALARY(Y ) :– Y>60000, EMPLOYEE(X ), Salary(X, Y )

In this case, the rule is still theoretically safe. However, in Prolog or any other system
that uses a top-down, depth-first inference mechanism, the rule creates an infinite
loop, since we first search for a value for Y and then check whether it is a salary of an
employee. The result is generation of an infinite number of Y values, even though
these, after a certain point, cannot lead to a set of true RHS predicates. One defini-
tion of Datalog considers both rules to be safe, since it does not depend on a partic-
ular inference mechanism. Nonetheless, it is generally advisable to write such a rule
in the safest form, with the predicates that restrict possible bindings of variables
placed first. As another example of an unsafe rule, consider the following rule:

HAS_SOMETHING(X, Y ) :– EMPLOYEE(X )
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REL_ONE(A, B, C ).
REL_TWO(D, E, F ).
REL_THREE(G, H, I, J ).

SELECT_ONE_A_EQ_C(X, Y, Z ) :– REL_ONE(C, Y, Z ).
SELECT_ONE_B_LESS_5(X, Y, Z ) :– REL_ONE(X, Y, Z ), Y< 5.
SELECT_ONE_A_EQ_C_AND_B_LESS_5(X, Y, Z ) :– REL_ONE(C, Y, Z ), Y<5

SELECT_ONE_A_EQ_C_OR_B_LESS_5(X, Y, Z ) :– REL_ONE(C, Y, Z ).
SELECT_ONE_A_EQ_C_OR_B_LESS_5(X, Y, Z ) :– REL_ONE(X, Y, Z ), Y<5.

PROJECT_THREE_ON_G_H(W, X ) :–  REL_THREE(W, X, Y, Z ).

UNION_ONE_TWO(X, Y, Z ) :–  REL_ONE(X, Y, Z ).
UNION_ONE_TWO(X, Y, Z ) :–  REL_TWO(X, Y, Z ).

INTERSECT_ONE_TWO(X, Y, Z ) :–  REL_ONE(X, Y, Z ), REL_TWO(X, Y, Z ).

DIFFERENCE_TWO_ONE(X, Y, Z ) :–  REL_TWO(X, Y, Z ) NOT(REL_ONE(X, Y, Z ).

CART  PROD _ONE_THREE(T, U, V, W, X, Y, Z ) :–
REL_ONE(T, U, V), REL_THREE(W, X, Y, Z ).

NATURAL_JOIN_ONE_THREE_C_EQ_G(U, V, W, X, Y, Z ) :–
REL_ONE(U, V, W ), REL_THREE(W, X, Y, Z ).

Figure 26.16
Predicates for illustrating relational operations.

Here, an infinite number of Y values can again be generated, since the variable Y
appears only in the head of the rule and hence is not limited to a finite set of values.
To define safe rules more formally, we use the concept of a limited variable. A vari-
able X is limited in a rule if (1) it appears in a regular (not built-in) predicate in the
body of the rule; (2) it appears in a predicate of the form X=c or c=X or (c1<<=X
and X<=c2) in the rule body, where c, c1, and c2 are constant values; or (3) it appears
in a predicate of the form X=Y or Y=X in the rule body, where Y is a limited vari-
able. A rule is said to be safe if all its variables are limited.

26.5.7 Use of Relational Operations
It is straightforward to specify many operations of the relational algebra in the form
of Datalog rules that define the result of applying these operations on the database
relations (fact predicates). This means that relational queries and views can easily be
specified in Datalog. The additional power that Datalog provides is in the specifica-
tion of recursive queries, and views based on recursive queries. In this section, we
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show how some of the standard relational operations can be specified as Datalog
rules. Our examples will use the base relations (fact-defined predicates) REL_ONE,
REL_TWO, and REL_THREE, whose schemas are shown in Figure 26.16. In Datalog,
we do not need to specify the attribute names as in Figure 26.16; rather, the arity
(degree) of each predicate is the important aspect. In a practical system, the domain
(data type) of each attribute is also important for operations such as UNION,
INTERSECTION, and JOIN, and we assume that the attribute types are compatible
for the various operations, as discussed in Chapter 3.

Figure 26.16 illustrates a number of basic relational operations. Notice that if the
Datalog model is based on the relational model and hence assumes that predicates
(fact relations and query results) specify sets of tuples, duplicate tuples in the same
predicate are automatically eliminated. This may or may not be true, depending on
the Datalog inference engine. However, it is definitely not the case in Prolog, so any
of the rules in Figure 26.16 that involve duplicate elimination are not correct for
Prolog. For example, if we want to specify Prolog rules for the UNION operation
with duplicate elimination, we must rewrite them as follows:

UNION_ONE_TWO(X, Y, Z) :– REL_ONE(X, Y, Z).

UNION_ONE_TWO(X, Y, Z) :– REL_TWO(X, Y, Z), NOT(REL_ONE(X, Y, Z)).

However, the rules shown in Figure 26.16 should work for Datalog, if duplicates are
automatically eliminated. Similarly, the rules for the PROJECT operation shown in
Figure 26.16 should work for Datalog in this case, but they are not correct for
Prolog, since duplicates would appear in the latter case.

26.5.8 Evaluation of Nonrecursive Datalog Queries
In order to use Datalog as a deductive database system, it is appropriate to define an
inference mechanism based on relational database query processing concepts. The
inherent strategy involves a bottom-up evaluation, starting with base relations; the
order of operations is kept flexible and subject to query optimization. In this section
we discuss an inference mechanism based on relational operations that can be
applied to nonrecursive Datalog queries. We use the fact and rule base shown in
Figures 26.14 and 26.15 to illustrate our discussion.

If a query involves only fact-defined predicates, the inference becomes one of
searching among the facts for the query result. For example, a query such as

DEPARTMENT(X, Research)?

is a selection of all employee names X who work for the Research department. In
relational algebra, it is the query:

π$1 (σ$2 = “Research” (DEPARTMENT))

which can be answered by searching through the fact-defined predicate
department(X,Y ). The query involves relational SELECT and PROJECT operations
on a base relation, and it can be handled by the database query processing and opti-
mization techniques discussed in Chapter 19.
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SUPERVISOR UNDER_40K_SUPERVISOR

OVER_40K_EMP

PRESIDENT

MAIN_PRODUCT_EMP

WORKS_ON EMPLOYEE SALARY SUPERVISE

DEPARTMENT PROJECT FEMALE MALE

SUBORDINATE

SUPERIOR

Figure 26.17
Predicate dependency
graph for Figures
26.15 and 26.16.

When a query involves rule-defined predicates, the inference mechanism must
compute the result based on the rule definitions. If a query is nonrecursive and
involves a predicate p that appears as the head of a rule p :– p1, p2, ..., pn, the strategy
is first to compute the relations corresponding to p1, p2, ..., pn and then to compute
the relation corresponding to p. It is useful to keep track of the dependency among
the predicates of a deductive database in a predicate dependency graph. Figure
26.17 shows the graph for the fact and rule predicates shown in Figures 26.14 and
26.15. The dependency graph contains a node for each predicate. Whenever a pred-
icate A is specified in the body (RHS) of a rule, and the head (LHS) of that rule is
the predicate B, we say that B depends on A, and we draw a directed edge from A to
B. This indicates that in order to compute the facts for the predicate B (the rule
head), we must first compute the facts for all the predicates A in the rule body. If the
dependency graph has no cycles, we call the rule set nonrecursive. If there is at least
one cycle, we call the rule set recursive. In Figure 26.17, there is one recursively
defined predicate—namely, SUPERIOR—which has a recursive edge pointing back
to itself. Additionally, because the predicate subordinate depends on SUPERIOR, it
also requires recursion in computing its result.

A query that includes only nonrecursive predicates is called a nonrecursive query.
In this section we discuss only inference mechanisms for nonrecursive queries. In
Figure 26.17, any query that does not involve the predicates SUBORDINATE or
SUPERIOR is nonrecursive. In the predicate dependency graph, the nodes corre-
sponding to fact-defined predicates do not have any incoming edges, since all fact-
defined predicates have their facts stored in a database relation. The contents of a
fact-defined predicate can be computed by directly retrieving the tuples in the cor-
responding database relation.
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The main function of an inference mechanism is to compute the facts that corre-
spond to query predicates. This can be accomplished by generating a relational
expression involving relational operators as SELECT, PROJECT, JOIN, UNION, and
SET DIFFERENCE (with appropriate provision for dealing with safety issues) that,
when executed, provides the query result. The query can then be executed by utiliz-
ing the internal query processing and optimization operations of a relational data-
base management system. Whenever the inference mechanism needs to compute
the fact set corresponding to a nonrecursive rule-defined predicate p, it first locates
all the rules that have p as their head. The idea is to compute the fact set for each
such rule and then to apply the UNION operation to the results, since UNION corre-
sponds to a logical OR operation. The dependency graph indicates all predicates q
on which each p depends, and since we assume that the predicate is nonrecursive,
we can always determine a partial order among such predicates q. Before computing
the fact set for p, first we compute the fact sets for all predicates q on which p
depends, based on their partial order. For example, if a query involves the predicate
UNDER_40K_SUPERVISOR, we must first compute both SUPERVISOR and
OVER_40K_EMP. Since the latter two depend only on the fact-defined predicates
EMPLOYEE, SALARY, and SUPERVISE, they can be computed directly from the
stored database relations.

This concludes our introduction to deductive databases. Additional material may be
found at the book’s Website, where the complete Chapter 25 from the third edition
is available. This includes a discussion on algorithms for recursive query processing.
We have included an extensive bibliography of work in deductive databases, recur-
sive query processing, magic sets, combination of relational databases with deduc-
tive rules, and GLUE-NAIL! System at the end of this chapter.

26.6 Summary
In this chapter we introduced database concepts for some of the common features
that are needed by advanced applications: active databases, temporal databases, spa-
tial databases, multimedia databases, and deductive databases. It is important to
note that each of these is a broad topic and warrants a complete textbook.

First we introduced the topic of active databases, which provide additional func-
tionality for specifying active rules. We introduced the Event-Condition-Action
(ECA) model for active databases. The rules can be automatically triggered by
events that occur—such as a database update—and they can initiate certain actions
that have been specified in the rule declaration if certain conditions are true. Many
commercial packages have some of the functionality provided by active databases in
the form of triggers. We discussed the different options for specifying rules, such as
row-level versus statement-level, before versus after, and immediate versus deferred.
We gave examples of row-level triggers in the Oracle commercial system, and 
statement-level rules in the STARBURST experimental system. The syntax for trig-
gers in the SQL-99 standard was also discussed. We briefly discussed some design
issues and some possible applications for active databases.
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Next we introduced some of the concepts of temporal databases, which permit the
database system to store a history of changes and allow users to query both current
and past states of the database. We discussed how time is represented and distin-
guished between the valid time and transaction time dimensions. We discussed how
valid time, transaction time, and bitemporal relations can be implemented using
tuple versioning in the relational model, with examples to illustrate how updates,
inserts, and deletes are implemented. We also showed how complex objects can be
used to implement temporal databases using attribute versioning. We looked at
some of the querying operations for temporal relational databases and gave a brief
introduction to the TSQL2 language.

Then we turned to spatial databases. Spatial databases provide concepts for data-
bases that keep track of objects that have spatial characteristics. We discussed the
types of spatial data, types of operators for processing spatial data, types of spatial
queries, and spatial indexing techniques, including the popular R-trees. Then we
discussed some spatial data mining techniques and applications of spatial data.

We discussed some basic types of multimedia databases and their important char-
acteristics. Multimedia databases provide features that allow users to store and
query different types of multimedia information, which includes images (such as
pictures and drawings), video clips (such as movies, newsreels, and home videos),
audio clips (such as songs, phone messages, and speeches), and documents (such as
books and articles). We provided a brief overview of the various types of media
sources and how multimedia sources may be indexed. Images are an extremely com-
mon type of data among databases today and are likely to occupy a large proportion
of stored data in databases. We therefore provided a more detailed treatment of
images: their automatic analysis, recognition of objects within images, and their
semantic tagging—all of which contribute to developing better systems to retrieve
images by content, which still remains a challenging problem. We also commented
on the analysis of audio data sources.

We concluded the chapter with an introduction to deductive databases. We gave an
overview of Prolog and Datalog notation. We discussed the clausal form of formu-
las. Datalog rules are restricted to Horn clauses, which contain at most one positive
literal. We discussed the proof-theoretic and model-theoretic interpretation of
rules. We briefly discussed Datalog rules and their safety and the ways of expressing
relational operators using Datalog rules. Finally, we discussed an inference mecha-
nism based on relational operations that can be used to evaluate nonrecursive
Datalog queries using  relational query optimization techniques. While Datalog has
been a popular language with many applications, unfortunately, implementations
of deductive database systems such as LDL or VALIDITY have not become widely
commercially available.
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Review Questions
26.1. What are the differences between row-level and statement-level active rules?

26.2. What are the differences among immediate, deferred, and detached
consideration of active rule conditions?

26.3. What are the differences among immediate, deferred, and detached
execution of active rule actions?

26.4. Briefly discuss the consistency and termination problems when designing a
set of active rules.

26.5. Discuss some applications of active databases.

26.6. Discuss how time is represented in temporal databases and compare the dif-
ferent time dimensions.

26.7. What are the differences between valid time, transaction time, and bitempo-
ral relations?

26.8. Describe how the insert, delete, and update commands should be imple-
mented on a valid time relation.

26.9. Describe how the insert, delete, and update commands should be imple-
mented on a bitemporal relation.

26.10. Describe how the insert, delete, and update commands should be imple-
mented on a transaction time relation.

26.11. What are the main differences between tuple versioning and attribute ver-
sioning?

26.12. How do spatial databases differ from regular databases?

26.13. What are the different types of spatial data?

26.14. Name the main types of spatial operators and different classes of spatial
queries.

26.15. What are the properties of R-trees that act as an index for spatial data?

26.16. Describe how a spatial join index between spatial objects can be constructed.

26.17. What are the different types of spatial data mining?

26.18. State the general form of a spatial association rule. Give an example of a spa-
tial association rule.

26.19. What are the different types of multimedia sources?

26.20. How are multimedia sources indexed for content-based retrieval?
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26.21. What important features of images are used to compare them?

26.22. What are the different approaches to recognizing objects in images?

26.23. How is semantic tagging of images used?

26.24. What are the difficulties in analyzing audio sources?

26.25. What are deductive databases?

26.26. Write sample rules in Prolog to define that courses with course number
above CS5000 are graduate courses and that DBgrads are those graduate stu-
dents who enroll in CS6400 and CS8803.

26.27. Define clausal form of formulas and Horn clauses.

26.28. What is theorem proving and what is proof-theoretic interpretation of rules?

26.29. What is model-theoretic interpretation and how does it differ from proof-
theoretic interpretation?

26.30. What are fact-defined predicates and rule-defined predicates?

26.31. What is a safe rule?

26.32. Give examples of rules that can define relational operations SELECT,
PROJECT, JOIN, and SET operations.

26.33. Discuss the inference mechanism based on relational operations that can be
applied to evaluate nonrecursive Datalog queries.

Exercises
26.34. Consider the COMPANY database described in Figure 3.6. Using the syntax

of Oracle triggers, write active rules to do the following:

a. Whenever an employee’s project assignments are changed, check if the
total hours per week spent on the employee’s projects are less than 30 or
greater than 40; if so, notify the employee’s direct supervisor.

b. Whenever an employee is deleted, delete the PROJECT tuples and
DEPENDENT tuples related to that employee, and if the employee man-
ages a department or supervises employees, set the Mgr_ssn for that
department to NULL and set the Super_ssn for those employees to NULL.

26.35. Repeat 26.34 but use the syntax of STARBURST active rules.

26.36. Consider the relational schema shown in Figure 26.18. Write active rules for
keeping the Sum_commissions attribute of SALES_PERSON equal to the sum
of the Commission attribute in SALES for each sales person. Your rules should
also check if the Sum_commissions exceeds 100000; if it does, call a procedure
Notify_manager(S_id). Write both statement-level rules in STARBURST nota-
tion and row-level rules in Oracle.
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S_id V_id Commission

SALES

Salesperson_id Name Title Phone Sum_commissions

SALES_PERSON

Figure 26.18
Database schema for sales
and salesperson commissions
in Exercise 26.36.

26.37. Consider the UNIVERSITY EER schema in Figure 8.10. Write some rules (in
English) that could be implemented via active rules to enforce some com-
mon integrity constraints that you think are relevant to this application.

26.38. Discuss which of the updates that created each of the tuples shown in Figure
26.9 were applied retroactively and which were applied proactively.

26.39. Show how the following updates, if applied in sequence, would change the
contents of the bitemporal EMP_BT relation in Figure 26.9. For each update,
state whether it is a retroactive or proactive update.

a. On 2004-03-10,17:30:00, the salary of Narayan is updated to 40000, effec-
tive on 2004-03-01.

b. On 2003-07-30,08:31:00, the salary of Smith was corrected to show that it
should have been entered as 31000 (instead of 30000 as shown), effective
on 2003-06-01.

c. On 2004-03-18,08:31:00, the database was changed to indicate that
Narayan was leaving the company (that is, logically deleted) effective on
2004-03-31.

d. On 2004-04-20,14:07:33, the database was changed to indicate the hiring
of a new employee called Johnson, with the tuple <‘Johnson’, ‘334455667’,
1, NULL > effective on 2004-04-20.

e. On 2004-04-28,12:54:02, the database was changed to indicate that Wong
was leaving the company (that is, logically deleted) effective on 2004-06-
01.

f. On 2004-05-05,13:07:33, the database was changed to indicate the rehir-
ing of Brown, with the same department and supervisor but with salary
35000 effective on 2004-05-01.

26.40. Show how the updates given in Exercise 26.39, if applied in sequence, would
change the contents of the valid time EMP_VT relation in Figure 26.8.

26.41. Add the following facts to the sample database in Figure 26.11:

SUPERVISE(ahmad, bob), SUPERVISE(franklin, gwen).

First modify the supervisory tree in Figure 26.11(b) to reflect this change.
Then construct a diagram showing the top-down evaluation of the query
SUPERIOR(james, Y) using rules 1 and 2 from Figure 26.12.
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26.42. Consider the following set of facts for the relation PARENT(X, Y), where Y is
the parent of X:

PARENT(a, aa), PARENT(a, ab), PARENT(aa, aaa), PARENT(aa, aab),
PARENT(aaa, aaaa), PARENT(aaa, aaab).

Consider the rules

r1: ANCESTOR(X, Y) :– PARENT(X, Y)
r2: ANCESTOR(X, Y) :– PARENT(X, Z), ANCESTOR(Z, Y)

which define ancestor Y of X as above.

a. Show how to solve the Datalog query

ANCESTOR(aa, X)?

and show your work at each step.

b. Show the same query by computing only the changes in the ancestor rela-
tion and using that in rule 2 each time.

[This question is derived from Bancilhon and Ramakrishnan (1986).]

26.43. Consider a deductive database with the following rules:

ANCESTOR(X, Y) :– FATHER(X, Y)
ANCESTOR(X, Y) :– FATHER(X, Z), ANCESTOR(Z, Y)

Notice that FATHER(X, Y) means that Y is the father of X; ANCESTOR(X, Y)
means that Y is the ancestor of X.

Consider the following fact base:

FATHER(Harry, Issac), FATHER(Issac, John), FATHER(John, Kurt).

a. Construct a model-theoretic interpretation of the above rules using the
given facts.

b. Consider that a database contains the above relations FATHER(X, Y ),
another relation BROTHER(X, Y ), and a third relation BIRTH(X, B ),
where B is the birth date of person X. State a rule that computes the first
cousins of the following variety: their fathers must be brothers.

c. Show a complete Datalog program with fact-based and rule-based literals
that computes the following relation: list of pairs of cousins, where the
first person is born after 1960 and the second after 1970. You may use
greater than as a built-in predicate. (Note: Sample facts for brother, birth,
and person must also be shown.)

26.44. Consider the following rules:

REACHABLE(X, Y) :– FLIGHT(X, Y)
REACHABLE(X, Y) :– FLIGHT(X, Z), REACHABLE(Z, Y)

where REACHABLE(X, Y) means that city Y can be reached from city X, and
FLIGHT(X, Y) means that there is a flight to city Y from city X.
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a. Construct fact predicates that describe the following:

i. Los Angeles, New York, Chicago, Atlanta, Frankfurt, Paris, Singapore,
Sydney are cities.

ii. The following flights exist: LA to NY, NY to Atlanta, Atlanta to
Frankfurt, Frankfurt to Atlanta, Frankfurt to Singapore, and
Singapore to Sydney. (Note: No flight in reverse direction can be auto-
matically assumed.)

b. Is the given data cyclic? If so, in what sense?

c. Construct a model-theoretic interpretation (that is, an interpretation
similar to the one shown in Figure 26.13) of the above facts and rules.

d. Consider the query

REACHABLE(Atlanta, Sydney)?

How will this query be executed? List the series of steps it will go through.

e. Consider the following rule-defined predicates:

ROUND-TRIP-REACHABLE(X, Y) :–
REACHABLE(X, Y), REACHABLE(Y, X)

DURATION(X, Y, Z)

Draw a predicate dependency graph for the above predicates. (Note:
DURATION(X, Y, Z) means that you can take a flight from X to Y in Z
hours.)

f. Consider the following query: What cities are reachable in 12 hours from
Atlanta? Show how to express it in Datalog. Assume built-in predicates
like greater-than(X, Y). Can this be converted into a relational algebra
statement in a straightforward way? Why or why not?

g. Consider the predicate population(X, Y), where Y is the population of
city X. Consider the following query: List all possible bindings of the
predicate pair (X, Y), where Y is a city that can be reached in two flights
from city X, which has over 1 million people. Show this query in Datalog.
Draw a corresponding query tree in relational algebraic terms.
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Data Mining Concepts

Over the last three decades, many organizations
have generated a large amount of machine-

readable data in the form of files and databases. To process this data, we have the
database technology available that supports query languages like SQL. The problem
with SQL is that it is a structured language that assumes the user is aware of the
database schema. SQL supports operations of relational algebra that allow a user to
select rows and columns of data from tables or join-related information from tables
based on common fields. In the next chapter, we will see that data warehousing tech-
nology affords several types of functionality: that of consolidation, aggregation, and
summarization of data. Data warehouses let us view the same information along
multiple dimensions. In this chapter, we will focus our attention on another very
popular area of interest known as data mining. As the term connotes, data mining
refers to the mining or discovery of new information in terms of patterns or rules
from vast amounts of data. To be practically useful, data mining must be carried out
efficiently on large files and databases. Although some data mining features are
being provided in RDBMSs, data mining is not well-integrated with database man-
agement systems.

We will briefly review the state of the art of this rather extensive field of data min-
ing, which uses techniques from such areas as machine learning, statistics, neural
networks, and genetic algorithms. We will highlight the nature of the information
that is discovered, the types of problems faced when trying to mine databases, and
the types of applications of data mining. We will also survey the state of the art of a
large number of commercial tools available (see Section 28.7) and describe a num-
ber of research advances that are needed to make this area viable.

28chapter 28
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28.1 Overview of Data Mining Technology
In reports such as the very popular Gartner Report,1 data mining has been hailed as
one of the top technologies for the near future. In this section we relate data mining
to the broader area called knowledge discovery and contrast the two by means of an
illustrative example.

28.1.1 Data Mining versus Data Warehousing
The goal of a data warehouse (see Chapter 29) is to support decision making with
data. Data mining can be used in conjunction with a data warehouse to help 
with certain types of decisions. Data mining can be applied to operational databases
with individual transactions. To make data mining more efficient, the data ware-
house should have an aggregated or summarized collection of data. Data mining
helps in extracting meaningful new patterns that cannot necessarily be found by
merely querying or processing data or metadata in the data warehouse. Therefore,
data mining applications should be strongly considered early, during the design of a
data warehouse. Also, data mining tools should be designed to facilitate their use in
conjunction with data warehouses. In fact, for very large databases running into ter-
abytes and even petabytes of data, successful use of data mining applications will
depend first on the construction of a data warehouse.

28.1.2 Data Mining as a Part of the Knowledge 
Discovery Process

Knowledge Discovery in Databases, frequently abbreviated as KDD, typically
encompasses more than data mining. The knowledge discovery process comprises
six phases:2 data selection, data cleansing, enrichment, data transformation or
encoding, data mining, and the reporting and display of the discovered information.

As an example, consider a transaction database maintained by a specialty consumer
goods retailer. Suppose the client data includes a customer name, ZIP Code, phone
number, date of purchase, item code, price, quantity, and total amount. A variety of
new knowledge can be discovered by KDD processing on this client database.
During data selection, data about specific items or categories of items, or from stores
in a specific region or area of the country, may be selected. The data cleansing
process then may correct invalid ZIP Codes or eliminate records with incorrect
phone prefixes. Enrichment typically enhances the data with additional sources of
information. For example, given the client names and phone numbers, the store
may purchase other data about age, income, and credit rating and append them to
each record. Data transformation and encoding may be done to reduce the amount

1The Gartner Report is one example of the many technology survey publications that corporate man-
agers rely on to make their technology selection discussions.
2This discussion is largely based on Adriaans and Zantinge (1996).
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of data. For instance, item codes may be grouped in terms of product categories into
audio, video, supplies, electronic gadgets, camera, accessories, and so on. ZIP Codes
may be aggregated into geographic regions, incomes may be divided into ranges,
and so on. In Figure 29.1, we will show a step called cleaning as a precursor to the
data warehouse creation. If data mining is based on an existing warehouse for this
retail store chain, we would expect that the cleaning has already been applied. It is
only after such preprocessing that data mining techniques are used to mine different
rules and patterns.

The result of mining may be to discover the following type of new information:

■ Association rules—for example, whenever a customer buys video equip-
ment, he or she also buys another electronic gadget.

■ Sequential patterns—for example, suppose a customer buys a camera, and
within three months he or she buys photographic supplies, then within six
months he is likely to buy an accessory item. This defines a sequential pat-
tern of transactions. A customer who buys more than twice in lean periods
may be likely to buy at least once during the Christmas period.

■ Classification trees—for example, customers may be classified by frequency
of visits, types of financing used, amount of purchase, or affinity for types of
items; some revealing statistics may be generated for such classes.

We can see that many possibilities exist for discovering new knowledge about buy-
ing patterns, relating factors such as age, income group, place of residence, to what
and how much the customers purchase. This information can then be utilized to
plan additional store locations based on demographics, run store promotions, com-
bine items in advertisements, or plan seasonal marketing strategies. As this retail
store example shows, data mining must be preceded by significant data preparation
before it can yield useful information that can directly influence business decisions.

The results of data mining may be reported in a variety of formats, such as listings,
graphic outputs, summary tables, or visualizations.

28.1.3 Goals of Data Mining and Knowledge Discovery
Data mining is typically carried out with some end goals or applications. Broadly
speaking, these goals fall into the following classes: prediction, identification, classi-
fication, and optimization.

■ Prediction. Data mining can show how certain attributes within the data
will behave in the future. Examples of predictive data mining include the
analysis of buying transactions to predict what consumers will buy under
certain discounts, how much sales volume a store will generate in a given
period, and whether deleting a product line will yield more profits. In such
applications, business logic is used coupled with data mining. In a scientific
context, certain seismic wave patterns may predict an earthquake with high
probability.



1038 Chapter 28 Data Mining Concepts

■ Identification. Data patterns can be used to identify the existence of an item,
an event, or an activity. For example, intruders trying to break a system may
be identified by the programs executed, files accessed, and CPU time per ses-
sion. In biological applications, existence of a gene may be identified by cer-
tain sequences of nucleotide symbols in the DNA sequence. The area known
as authentication is a form of identification. It ascertains whether a user is
indeed a specific user or one from an authorized class, and involves a com-
parison of parameters or images or signals against a database.

■ Classification. Data mining can partition the data so that different classes
or categories can be identified based on combinations of parameters. For
example, customers in a supermarket can be categorized into discount-
seeking shoppers, shoppers in a rush, loyal regular shoppers, shoppers
attached to name brands, and infrequent shoppers. This classification may
be used in different analyses of customer buying transactions as a post-
mining activity. Sometimes classification based on common domain
knowledge is used as an input to decompose the mining problem and make
it simpler. For instance, health foods, party foods, or school lunch foods are
distinct categories in the supermarket business. It makes sense to analyze
relationships within and across categories as separate problems. Such cate-
gorization may be used to encode the data appropriately before subjecting it
to further data mining.

■ Optimization. One eventual goal of data mining may be to optimize the use
of limited resources such as time, space, money, or materials and to maxi-
mize output variables such as sales or profits under a given set of constraints.
As such, this goal of data mining resembles the objective function used 
in operations research problems that deals with optimization under 
constraints.

The term data mining is popularly used in a very broad sense. In some situations it
includes statistical analysis and constrained optimization as well as machine learn-
ing. There is no sharp line separating data mining from these disciplines. It is
beyond our scope, therefore, to discuss in detail the entire range of applications that
make up this vast body of work. For a detailed understanding of the topic, readers
are referred to specialized books devoted to data mining.

28.1.4 Types of Knowledge Discovered 
during Data Mining

The term knowledge is broadly interpreted as involving some degree of intelligence.
There is a progression from raw data to information to knowledge as we go through
additional processing. Knowledge is often classified as inductive versus deductive.
Deductive knowledge deduces new information based on applying prespecified log-
ical rules of deduction on the given data. Data mining addresses inductive knowl-
edge, which discovers new rules and patterns from the supplied data. Knowledge
can be represented in many forms: In an unstructured sense, it can be represented
by rules or propositional logic. In a structured form, it may be represented in deci-
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sion trees, semantic networks, neural networks, or hierarchies of classes or frames. It
is common to describe the knowledge discovered during data mining as follows:

■ Association rules. These rules correlate the presence of a set of items with
another range of values for another set of variables. Examples: (1) When a
female retail shopper buys a handbag, she is likely to buy shoes. (2) An X-ray
image containing characteristics a and b is likely to also exhibit characteristic c.

■ Classification hierarchies. The goal is to work from an existing set of events
or transactions to create a hierarchy of classes. Examples: (1) A population
may be divided into five ranges of credit worthiness based on a history of
previous credit transactions. (2) A model may be developed for the factors
that determine the desirability of a store location on a 1–10 scale. (3) Mutual
funds may be classified based on performance data using characteristics such
as growth, income, and stability.

■ Sequential patterns. A sequence of actions or events is sought. Example: If a
patient underwent cardiac bypass surgery for blocked arteries and an
aneurysm and later developed high blood urea within a year of surgery, he or
she is likely to suffer from kidney failure within the next 18 months.
Detection of sequential patterns is equivalent to detecting associations
among events with certain temporal relationships.

■ Patterns within time series. Similarities can be detected within positions of
a time series of data, which is a sequence of data taken at regular intervals,
such as daily sales or daily closing stock prices. Examples: (1) Stocks of a util-
ity company, ABC Power, and a financial company, XYZ Securities, showed
the same pattern during 2009 in terms of closing stock prices. (2) Two prod-
ucts show the same selling pattern in summer but a different one in winter.
(3) A pattern in solar magnetic wind may be used to predict changes in
Earth’s atmospheric conditions.

■ Clustering. A given population of events or items can be partitioned (seg-
mented) into sets of “similar” elements. Examples: (1) An entire population
of treatment data on a disease may be divided into groups based on the sim-
ilarity of side effects produced. (2) The adult population in the United States
may be categorized into five groups from most likely to buy to least likely to
buy a new product. (3) The Web accesses made by a collection of users
against a set of documents (say, in a digital library) may be analyzed in terms
of the keywords of documents to reveal clusters or categories of users.

For most applications, the desired knowledge is a combination of the above types.
We expand on each of the above knowledge types in the following sections.

28.2 Association Rules

28.2.1 Market-Basket Model, Support, and Confidence
One of the major technologies in data mining involves the discovery of association
rules. The database is regarded as a collection of transactions, each involving a set of
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items. A common example is that of market-basket data. Here the market basket
corresponds to the sets of items a consumer buys in a supermarket during one visit.
Consider four such transactions in a random sample shown in Figure 28.1.

An association rule is of the form X => Y, where X = {x1, x2, ..., xn}, and Y = {y1, y2,
..., ym} are sets of items, with xi and yj being distinct items for all i and all j. This
association states that if a customer buys X, he or she is also likely to buy Y. In gen-
eral, any association rule has the form LHS (left-hand side) => RHS (right-hand
side), where LHS and RHS are sets of items. The set LHS ∪ RHS is called an itemset,
the set of items purchased by customers. For an association rule to be of interest to
a data miner, the rule should satisfy some interest measure. Two common interest
measures are support and confidence.

The support for a rule LHS => RHS is with respect to the itemset; it refers to how
frequently a specific itemset occurs in the database. That is, the support is the per-
centage of transactions that contain all of the items in the itemset LHS ∪ RHS. If the
support is low, it implies that there is no overwhelming evidence that items in LHS
∪ RHS occur together because the itemset occurs in only a small fraction of trans-
actions. Another term for support is prevalence of the rule.

The confidence is with regard to the implication shown in the rule. The confidence
of the rule LHS => RHS is computed as the support(LHS ∪ RHS)/support(LHS).
We can think of it as the probability that the items in RHS will be purchased given
that the items in LHS are purchased by a customer. Another term for confidence is
strength of the rule.

As an example of support and confidence, consider the following two rules: milk =>
juice and bread => juice. Looking at our four sample transactions in Figure 28.1, we
see that the support of {milk, juice} is 50 percent and the support of {bread, juice} is
only 25 percent. The confidence of milk => juice is 66.7 percent (meaning that, of
three transactions in which milk occurs, two contain juice) and the confidence of
bread => juice is 50 percent (meaning that one of two transactions containing
bread also contains juice).

As we can see, support and confidence do not necessarily go hand in hand. The goal
of mining association rules, then, is to generate all possible rules that exceed some
minimum user-specified support and confidence thresholds. The problem is thus
decomposed into two subproblems:

1. Generate all itemsets that have a support that exceeds the threshold. These
sets of items are called large (or frequent) itemsets. Note that large here
means large support.

Transaction_id Time Items_bought
101 6:35 milk, bread, cookies, juice
792 7:38 milk, juice

1130 8:05 milk, eggs
1735 8:40 bread, cookies, coffee

Figure 28.1
Sample transactions in
market-basket model.
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2. For each large itemset, all the rules that have a minimum confidence are gen-
erated as follows: For a large itemset X and Y ⊂ X, let Z = X – Y; then if sup-
port(X)/support(Z) > minimum confidence, the rule Z => Y (that is, X – Y
=> Y) is a valid rule.

Generating rules by using all large itemsets and their supports is relatively straight-
forward. However, discovering all large itemsets together with the value for their
support is a major problem if the cardinality of the set of items is very high. A typi-
cal supermarket has thousands of items. The number of distinct itemsets is 2m,
where m is the number of items, and counting support for all possible itemsets
becomes very computation intensive. To reduce the combinatorial search space,
algorithms for finding association rules utilize the following properties:

■ A subset of a large itemset must also be large (that is, each subset of a large
itemset exceeds the minimum required support).

■ Conversely, a superset of a small itemset is also small (implying that it does
not have enough support).

The first property is referred to as downward closure. The second property, called
the antimonotonicity property, helps to reduce the search space of possible solu-
tions. That is, once an itemset is found to be small (not a large itemset), then any
extension to that itemset, formed by adding one or more items to the set, will also
yield a small itemset.

28.2.2 Apriori Algorithm
The first algorithm to use the downward closure and antimontonicity properties
was the Apriori algorithm, shown as Algorithm 28.1.

We illustrate Algorithm 28.1 using the transaction data in Figure 28.1 using a mini-
mum support of 0.5. The candidate 1-itemsets are {milk, bread, juice, cookies, eggs,
coffee} and their respective supports are 0.75, 0.5, 0.5, 0.5, 0.25, and 0.25. The first
four items qualify for L1 since each support is greater than or equal to 0.5. In the first
iteration of the repeat-loop, we extend the frequent 1-itemsets to create the candi-
date frequent 2-itemsets, C2. C2 contains {milk, bread}, {milk, juice}, {bread, juice},
{milk, cookies}, {bread, cookies}, and {juice, cookies}. Notice, for example, that
{milk, eggs} does not appear in C2 since {eggs} is small (by the antimonotonicity
property) and does not appear in L1. The supports for the six sets contained in C2
are 0.25, 0.5, 0.25, 0.25, 0.5, and 0.25 and are computed by scanning the set of trans-
actions. Only the second 2-itemset {milk, juice} and the fifth 2-itemset {bread,
cookies} have support greater than or equal to 0.5. These two 2-itemsets form the
frequent 2-itemsets, L2.

Algorithm 28.1. Apriori Algorithm for Finding Frequent (Large) Itemsets

Input: Database of m transactions, D, and a minimum support, mins, represented as
a fraction of m.
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Output: Frequent itemsets, L1, L2, ..., Lk

Begin /* steps or statements are numbered for better readability */

1. Compute support(ij) = count(ij)/m for each individual item, i1, i2, ..., in by
scanning the database once and counting the number of transactions that
item ij appears in (that is, count(ij));

2. The candidate frequent 1-itemset, C1, will be the set of items i1, i2, ..., in;

3. The subset of items containing ij from C1 where support(ij) >= mins
becomes the frequent

1-itemset, L1;

4. k = 1;

termination = false;

repeat

1. Lk+1 = ;

2. Create the candidate frequent (k+1)-itemset, Ck+1, by combining members
of Lk that have k–1 items in common (this forms candidate frequent (k+1)-
itemsets by selectively extending frequent k-itemsets by one item);

3. In addition, only consider as elements of Ck+1 those k+1 items such that
every subset of size k appears in Lk;

4. Scan the database once and compute the support for each member of Ck+1; if
the support for a member of Ck+1 >= mins then add that member to Lk+1;

5. If Lk+1 is empty then termination = true

else k = k + 1;

until termination;

End;

In the next iteration of the repeat-loop, we construct candidate frequent 3-itemsets
by adding additional items to sets in L2. However, for no extension of itemsets in L2
will all 2-item subsets be contained in L2. For example, consider {milk, juice, bread};
the 2-itemset {milk, bread} is not in L2, hence {milk, juice, bread} cannot be a fre-
quent 3-itemset by the downward closure property. At this point the algorithm ter-
minates with L1 equal to {{milk}, {bread}, {juice}, {cookies}} and L2 equal to {{milk,
juice}, {bread, cookies}}.

Several other algorithms have been proposed to mine association rules. They vary
mainly in terms of how the candidate itemsets are generated, and how the supports
for the candidate itemsets are counted. Some algorithms use such data structures as
bitmaps and hashtrees to keep information about itemsets. Several algorithms have
been proposed that use multiple scans of the database because the potential number
of itemsets, 2m, can be too large to set up counters during a single scan. We will
examine three improved algorithms (compared to the Apriori algorithm) for asso-
ciation rule mining: the Sampling algorithm, the Frequent-Pattern Tree algorithm,
and the Partition algorithm.
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28.2.3 Sampling Algorithm
The main idea for the Sampling algorithm is to select a small sample, one that fits
in main memory, of the database of transactions and to determine the frequent
itemsets from that sample. If those frequent itemsets form a superset of the frequent
itemsets for the entire database, then we can determine the real frequent itemsets by
scanning the remainder of the database in order to compute the exact support val-
ues for the superset itemsets. A superset of the frequent itemsets can usually be
found from the sample by using, for example, the Apriori algorithm, with a lowered
minimum support.

In some rare cases, some frequent itemsets may be missed and a second scan of the
database is needed. To decide whether any frequent itemsets have been missed, the
concept of the negative border is used. The negative border with respect to a fre-
quent itemset, S, and set of items, I, is the minimal itemsets contained in
PowerSet(I) and not in S. The basic idea is that the negative border of a set of fre-
quent itemsets contains the closest itemsets that could also be frequent. Consider
the case where a set X is not contained in the frequent itemsets. If all subsets of X are
contained in the set of frequent itemsets, then X would be in the negative border.

We illustrate this with the following example. Consider the set of items I = {A, B, C,
D, E} and let the combined frequent itemsets of size 1 to 3 be S = {{A}, {B}, {C}, {D},
{AB}, {AC}, {BC}, {AD}, {CD}, {ABC}}. The negative border is {{E}, {BD}, {ACD}}.
The set {E} is the only 1-itemset not contained in S, {BD} is the only 2-itemset 
not in S but whose 1-itemset subsets are, and {ACD} is the only 3-itemset whose 
2-itemset subsets are all in S. The negative border is important since it is necessary
to determine the support for those itemsets in the negative border to ensure that no
large itemsets are missed from analyzing the sample data.

Support for the negative border is determined when the remainder of the database
is scanned. If we find that an itemset, X, in the negative border belongs in the set of
all frequent itemsets, then there is a potential for a superset of X to also be frequent.
If this happens, then a second pass over the database is needed to make sure that all
frequent itemsets are found.

28.2.4 Frequent-Pattern (FP) Tree and FP-Growth Algorithm
The Frequent-Pattern Tree (FP-tree) is motivated by the fact that Apriori-based
algorithms may generate and test a very large number of candidate itemsets.
For example, with 1000 frequent 1-itemsets, the Apriori algorithm would have to
generate

or 499,500 candidate 2-itemsets. The FP-Growth algorithm is one approach that
eliminates the generation of a large number of candidate itemsets.

1000

2

⎛
⎝⎜

⎞
⎠⎟
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The algorithm first produces a compressed version of the database in terms of an
FP-tree (frequent-pattern tree). The FP-tree stores relevant itemset information and
allows for the efficient discovery of frequent itemsets. The actual mining process
adopts a divide-and-conquer strategy where the mining process is decomposed into
a set of smaller tasks that each operates on a conditional FP-tree, a subset (projec-
tion) of the original tree. To start with, we examine how the FP-tree is constructed.
The database is first scanned and the frequent 1-itemsets along with their support
are computed. With this algorithm, the support is the count of transactions contain-
ing the item rather than the fraction of transactions containing the item. The fre-
quent 1-itemsets are then sorted in nonincreasing order of their support. Next, the
root of the FP-tree is created with a NULL label. The database is scanned a second
time and for each transaction T in the database, the frequent 1-itemsets in T are
placed in order as was done with the frequent 1-itemsets. We can designate this
sorted list for T as consisting of a first item, the head, and the remaining items, the
tail. The itemset information (head, tail) is inserted into the FP-tree recursively,
starting at the root node, as follows:

1. If the current node, N, of the FP-tree has a child with an item name = head,
then increment the count associated with node N by 1, else create a new
node, N, with a count of 1, link N to its parent and link N with the item
header table (used for efficient tree traversal).

2. If the tail is nonempty, then repeat step (1) using as the sorted list only the
tail, that is, the old head is removed and the new head is the first item from
the tail and the remaining items become the new tail.

The item header table, created during the process of building the FP-tree, contains
three fields per entry for each frequent item: item identifier, support count, and
node link. The item identifier and support count are self-explanatory. The node link
is a pointer to an occurrence of that item in the FP-tree. Since multiple occurrences
of a single item may appear in the FP-tree, these items are linked together as a list
where the start of the list is pointed to by the node link in the item header table. We
illustrate the building of the FP-tree using the transaction data in Figure 28.1. Let us
use a minimum support of 2. One pass over the four transactions yields the follow-
ing frequent 1-itemsets with associated support: {{(milk, 3)}, {(bread, 2)}, {(cookies,
2)}, {(juice, 2)}}. The database is scanned a second time and each transaction will be
processed again.

For the first transaction, we create the sorted list, T = {milk, bread, cookies, juice}.
The items in T are the frequent 1-itemsets from the first transaction. The items are
ordered based on the nonincreasing ordering of the count of the 1-itemsets found
in pass 1 (that is, milk first, bread second, and so on). We create a NULL root node
for the FP-tree and insert milk as a child of the root, bread as a child of milk, cookies
as a child of bread, and juice as a child of cookies. We adjust the entries for the fre-
quent items in the item header table.

For the second transaction, we have the sorted list {milk, juice}. Starting at the root,
we see that a child node with label milk exists, so we move to that node and update
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its count (to account for the second transaction that contains milk). We see that
there is no child of the current node with label juice, so we create a new node with
label juice. The item header table is adjusted.

The third transaction only has 1-frequent item, {milk}. Again, starting at the root,
we see that the node with label milk exists, so we move to that node, increment its
count, and adjust the item header table. The final transaction contains frequent
items, {bread, cookies}. At the root node, we see that a child with label bread does
not exist. Thus, we create a new child of the root, initialize its counter, and then
insert cookies as a child of this node and initialize its count. After the item header
table is updated, we end up with the FP-tree and item header table as shown in
Figure 28.2. If we examine this FP-tree, we see that it indeed represents the original
transactions in a compressed format (that is, only showing the items from each
transaction that are large 1-itemsets).

Algorithm 28.2 is used for mining the FP-tree for frequent patterns. With the FP-
tree, it is possible to find all frequent patterns that contain a given frequent item by
starting from the item header table for that item and traversing the node links in the
FP-tree. The algorithm starts with a frequent 1-itemset (suffix pattern) and con-
structs its conditional pattern base and then its conditional FP-tree. The conditional
pattern base is made up of a set of prefix paths, that is, where the frequent item is a
suffix. For example, if we consider the item juice, we see from Figure 28.2 that there
are two paths in the FP-tree that end with juice: (milk, bread, cookies, juice) and
(milk, juice). The two associated prefix paths are (milk, bread, cookies) and (milk).
The conditional FP-tree is constructed from the patterns in the conditional pattern
base. The mining is recursively performed on this FP-tree. The frequent patterns are
formed by concatenating the suffix pattern with the frequent patterns produced
from a conditional FP-tree.

Item Support Link

Milk 3

Bread 2

Cookies 2

Juice 2

Bread: 1Milk: 3

Bread: 1

Cookies: 1

Juice: 1

Juice: 1 Cookies: 1

NULL

Figure 28.2
FP-tree and item
header table.
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Algorithm 28.2. FP-Growth Algorithm for Finding Frequent Itemsets

Input: FP-tree and a minimum support, mins

Output: frequent patterns (itemsets)

procedure FP-growth (tree, alpha);

Begin
if tree contains a single path P then

for each combination, beta, of the nodes in the path
generate pattern (beta ∪ alpha)
with support = minimum support of nodes in beta

else
for each item, i, in the header of the tree do

begin
generate pattern beta = (i ∪ alpha) with support = i.support;
construct beta’s conditional pattern base;
construct beta’s conditional FP-tree, beta_tree;
if beta_tree is not empty then

FP-growth(beta_tree, beta);
end;

End;

We illustrate the algorithm using the data in Figure 28.1 and the tree in Figure 28.2.
The procedure FP-growth is called with the two parameters: the original FP-tree
and NULL for the variable alpha. Since the original FP-tree has more than a single
path, we execute the else part of the first if statement. We start with the frequent
item, juice. We will examine the frequent items in order of lowest support (that is,
from the last entry in the table to the first). The variable beta is set to juice with 
support equal to 2.

Following the node link in the item header table, we construct the conditional pat-
tern base consisting of two paths (with juice as suffix). These are (milk, bread, cook-
ies: 1) and (milk: 1). The conditional FP-tree consists of only a single node, milk: 2.
This is due to a support of only 1 for node bread and cookies, which is below the
minimal support of 2. The algorithm is called recursively with an FP-tree of only a
single node (that is, milk: 2) and a beta value of juice. Since this FP-tree only has one
path, all combinations of beta and nodes in the path are generated—that is, {milk,
juice}—with support of 2.

Next, the frequent item, cookies, is used. The variable beta is set to cookies with sup-
port = 2. Following the node link in the item header table, we construct the condi-
tional pattern base consisting of two paths. These are (milk, bread: 1) and (bread:
1). The conditional FP-tree is only a single node, bread: 2. The algorithm is called
recursively with an FP-tree of only a single node (that is, bread: 2) and a beta value
of cookies. Since this FP-tree only has one path, all combinations of beta and nodes
in the path are generated, that is, {bread, cookies} with support of 2. The frequent
item, bread, is considered next. The variable beta is set to bread with support = 2.
Following the node link in the item header table, we construct the conditional 
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pattern base consisting of one path, which is (milk: 1). The conditional FP-tree is
empty since the count is less than the minimum support. Since the conditional FP-
tree is empty, no frequent patterns will be generated.

The last frequent item to consider is milk. This is the top item in the item header
table and as such has an empty conditional pattern base and empty conditional FP-
tree. As a result, no frequent patterns are added. The result of executing the algo-
rithm is the following frequent patterns (or itemsets) with their support: {{milk: 3},
{bread: 2}, {cookies: 2}, {juice: 2}, {milk, juice: 2}, {bread, cookies: 2}}.

28.2.5 Partition Algorithm
Another algorithm, called the Partition algorithm,3 is summarized below. If we are
given a database with a small number of potential large itemsets, say, a few thou-
sand, then the support for all of them can be tested in one scan by using a partition-
ing technique. Partitioning divides the database into nonoverlapping subsets; these
are individually considered as separate databases and all large itemsets for that par-
tition, called local frequent itemsets, are generated in one pass. The Apriori algorithm
can then be used efficiently on each partition if it fits entirely in main memory.
Partitions are chosen in such a way that each partition can be accommodated in
main memory. As such, a partition is read only once in each pass. The only caveat
with the partition method is that the minimum support used for each partition has
a slightly different meaning from the original value. The minimum support is based
on the size of the partition rather than the size of the database for determining local
frequent (large) itemsets. The actual support threshold value is the same as given
earlier, but the support is computed only for a partition.

At the end of pass one, we take the union of all frequent itemsets from each parti-
tion. This forms the global candidate frequent itemsets for the entire database.
When these lists are merged, they may contain some false positives. That is, some of
the itemsets that are frequent (large) in one partition may not qualify in several
other partitions and hence may not exceed the minimum support when the original
database is considered. Note that there are no false negatives; no large itemsets will
be missed. The global candidate large itemsets identified in pass one are verified in
pass two; that is, their actual support is measured for the entire database. At the end
of phase two, all global large itemsets are identified. The Partition algorithm lends
itself naturally to a parallel or distributed implementation for better efficiency.
Further improvements to this algorithm have been suggested.4

28.2.6 Other Types of Association Rules

Association Rules among Hierarchies. There are certain types of associations
that are particularly interesting for a special reason. These associations occur among

3See Savasere et al. (1995) for details of the algorithm, the data structures used to implement it, and its
performance comparisons.
4See Cheung et al. (1996) and Lin and Dunham (1998).
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Beverages

Carbonated Noncarbonated

Orange Apple Others Plain Clear

Colas Clear
drinks

Mixed
drinks

Bottled
juices

Bottled
water

Wine
coolers

Desserts

Ice cream Baked Frozen yogurt

Rich
cream

Reduce Healthy

Figure 28.3
Taxonomy of items
in a supermarket.

hierarchies of items. Typically, it is possible to divide items among disjoint hierar-
chies based on the nature of the domain. For example, foods in a supermarket, items
in a department store, or articles in a sports shop can be categorized into classes and
subclasses that give rise to hierarchies. Consider Figure 28.3, which shows the taxon-
omy of items in a supermarket. The figure shows two hierarchies—beverages and
desserts, respectively. The entire groups may not produce associations of the form
beverages => desserts, or desserts => beverages. However, associations of the type
Healthy-brand frozen yogurt => bottled water, or Rich cream-brand ice cream =>
wine cooler may produce enough confidence and support to be valid association
rules of interest.

Therefore, if the application area has a natural classification of the itemsets into
hierarchies, discovering associations within the hierarchies is of no particular inter-
est. The ones of specific interest are associations across hierarchies. They may occur
among item groupings at different levels.

Multidimensional Associations. Discovering association rules involves search-
ing for patterns in a file. In Figure 28.1, we have an example of a file of customer
transactions with three dimensions: Transaction_id, Time, and Items_bought.
However, our data mining tasks and algorithms introduced up to this point only
involve one dimension: Items_bought. The following rule is an example of includ-
ing the label of the single dimension: Items_bought(milk) => Items_bought(juice).
It may be of interest to find association rules that involve multiple dimensions, for
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example, Time(6:30...8:00) => Items_bought(milk). Rules like these are called
multidimensional association rules. The dimensions represent attributes of records
of a file or, in terms of relations, columns of rows of a relation, and can be categori-
cal or quantitative. Categorical attributes have a finite set of values that display no
ordering relationship. Quantitative attributes are numeric and their values display
an ordering relationship, for example, <. Items_bought is an example of a categori-
cal attribute and Transaction_id and Time are quantitative.

One approach to handling a quantitative attribute is to partition its values into
nonoverlapping intervals that are assigned labels. This can be done in a static man-
ner based on domain-specific knowledge. For example, a concept hierarchy may
group values for Salary into three distinct classes: low income (0 < Salary < 29,999),
middle income (30,000 < Salary < 74,999), and high income (Salary > 75,000). From
here, the typical Apriori-type algorithm or one of its variants can be used for the
rule mining since the quantitative attributes now look like categorical attributes.
Another approach to partitioning is to group attribute values based on data distri-
bution, for example, equi-depth partitioning, and to assign integer values to each
partition. The partitioning at this stage may be relatively fine, that is, a larger num-
ber of intervals. Then during the mining process, these partitions may combine
with other adjacent partitions if their support is less than some predefined maxi-
mum value. An Apriori-type algorithm can be used here as well for the data mining.

Negative Associations. The problem of discovering a negative association is
harder than that of discovering a positive association. A negative association is of
the following type: 60 percent of customers who buy potato chips do not buy bottled
water. (Here, the 60 percent refers to the confidence for the negative association
rule.) In a database with 10,000 items, there are 210,000 possible combinations of
items, a majority of which do not appear even once in the database. If the absence of
a certain item combination is taken to mean a negative association, then we poten-
tially have millions and millions of negative association rules with RHSs that are of
no interest at all. The problem, then, is to find only interesting negative rules. In gen-
eral, we are interested in cases in which two specific sets of items appear very rarely
in the same transaction. This poses two problems.

1. For a total item inventory of 10,000 items, the probability of any two being
bought together is (1/10,000) * (1/10,000) = 10–8. If we find the actual sup-
port for these two occurring together to be zero, that does not represent a
significant departure from expectation and hence is not an interesting (neg-
ative) association.

2. The other problem is more serious. We are looking for item combinations
with very low support, and there are millions and millions with low or even
zero support. For example, a data set of 10 million transactions has most of
the 2.5 billion pairwise combinations of 10,000 items missing. This would
generate billions of useless rules.

Therefore, to make negative association rules interesting, we must use prior knowl-
edge about the itemsets. One approach is to use hierarchies. Suppose we use the
hierarchies of soft drinks and chips shown in Figure 28.4.
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Soft drinks

Joke Wakeup Topsy

Chips

Days Nightos Party’Os

Figure 28.4
Simple hierarchy of
soft drinks and chips.

A strong positive association has been shown between soft drinks and chips. If we
find a large support for the fact that when customers buy Days chips they predomi-
nantly buy Topsy and not Joke and not Wakeup, that would be interesting because
we would normally expect that if there is a strong association between Days and
Topsy, there should also be such a strong association between Days and Joke or Days
and Wakeup.5

In the frozen yogurt and bottled water groupings shown in Figure 28.3, suppose the
Reduce versus Healthy-brand division is 80–20 and the Plain and Clear brands divi-
sion is 60–40 among respective categories. This would give a joint probability of
Reduce frozen yogurt being purchased with Plain bottled water as 48 percent
among the transactions containing a frozen yogurt and bottled water. If this sup-
port, however, is found to be only 20 percent, it would indicate a significant negative
association among Reduce yogurt and Plain bottled water; again, that would be
interesting.

The problem of finding negative association is important in the above situations
given the domain knowledge in the form of item generalization hierarchies (that is,
the beverage given and desserts hierarchies shown in Figure 28.3), the existing posi-
tive associations (such as between the frozen yogurt and bottled water groups), and
the distribution of items (such as the name brands within related groups). The
scope of discovery of negative associations is limited in terms of knowing the item
hierarchies and distributions. Exponential growth of negative associations remains
a challenge.

28.2.7 Additional Considerations for Association Rules
Mining association rules in real-life databases is complicated by the following fac-
tors:

■ The cardinality of itemsets in most situations is extremely large, and the vol-
ume of transactions is very high as well. Some operational databases in
retailing and communication industries collect tens of millions of transac-
tions per day.

■ Transactions show variability in such factors as geographic location and sea-
sons, making sampling difficult.

■ Item classifications exist along multiple dimensions. Hence, driving the dis-
covery process with domain knowledge, particularly for negative rules, is
extremely difficult.

5For simplicity we are assuming a uniform distribution of transactions among members of a hierarchy.
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■ Quality of data is variable; significant problems exist with missing, erro-
neous, conflicting, as well as redundant data in many industries.

28.3 Classification
Classification is the process of learning a model that describes different classes of
data. The classes are predetermined. For example, in a banking application, cus-
tomers who apply for a credit card may be classified as a poor risk, fair risk, or good
risk. Hence this type of activity is also called supervised learning. Once the model is
built, it can be used to classify new data. The first step—learning the model—is
accomplished by using a training set of data that has already been classified. Each
record in the training data contains an attribute, called the class label, which indi-
cates which class the record belongs to. The model that is produced is usually in the
form of a decision tree or a set of rules. Some of the important issues with regard to
the model and the algorithm that produces the model include the model’s ability to
predict the correct class of new data, the computational cost associated with the
algorithm, and the scalability of the algorithm.

We will examine the approach where our model is in the form of a decision tree. A
decision tree is simply a graphical representation of the description of each class or,
in other words, a representation of the classification rules. A sample decision tree is
pictured in Figure 28.5. We see from Figure 28.5 that if a customer is married and if
salary >= 50K, then they are a good risk for a bank credit card. This is one of the
rules that describe the class good risk. Traversing the decision tree from the root to
each leaf node forms other rules for this class and the two other classes. Algorithm
28.3 shows the procedure for constructing a decision tree from a training data set.
Initially, all training samples are at the root of the tree. The samples are partitioned

Married

Salary Acct_balance

Fair risk Good risk

Poor risk

< 20K >= 20K >= 50K < 5K >= 5K

< 25 >= 25

< 50K

NoYes

Fair risk Good risk Poor risk Age

Figure 28.5
Sample decision tree for
credit card applications.
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recursively based on selected attributes. The attribute used at a node to partition the
samples is the one with the best splitting criterion, for example, the one that maxi-
mizes the information gain measure.

Algorithm 28.3. Algorithm for Decision Tree Induction

Input: Set of training data records: R1, R2, ..., Rm and set of attributes: A1, A2, ..., An

Output: Decision tree

procedure Build_tree (records, attributes);
Begin

create a node N;
if all records belong to the same class, C then

return N as a leaf node with class label C;
if attributes is empty then

return N as a leaf node with class label C, such that the majority of
records belong to it;

select attribute Ai (with the highest information gain) from attributes;
label node N with Ai;
for each known value, vj, of Ai do

begin
add a branch from node N for the condition Ai = vj;
Sj = subset of records where Ai = vj;
if Sj is empty then

add a leaf, L, with class label C, such that the majority of
records belong to it and return L

else add the node returned by Build_tree(Sj, attributes – Ai);
end;

End;

Before we illustrate Algorithm 28.3, we will explain the information gain measure
in more detail. The use of entropy as the information gain measure is motivated by
the goal of minimizing the information needed to classify the sample data in the
resulting partitions and thus minimizing the expected number of conditional tests
needed to classify a new record. The expected information needed to classify train-
ing data of s samples, where the Class attribute has n values (v1, ..., vn) and si is the
number of samples belonging to class label vi, is given by

where pi is the probability that a random sample belongs to the class with label vi.
An estimate for pi is si/s. Consider an attribute A with values {v1, ..., vm} used as the
test attribute for splitting in the decision tree. Attribute A partitions the samples
into the subsets S1, ..., Sm where samples in each Sj have a value of vj for attribute A.
Each Sj may contain samples that belong to any of the classes. The number of
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samples in Sj that belong to class i can be denoted as sij. The entropy associated with
using attribute A as the test attribute is defined as

I(s1j, ..., snj) can be defined using the formulation for I(s1, ..., sn) with pi being
replaced by pij where pij = sij/sj. Now the information gain by partitioning on attrib-
ute A, Gain(A), is defined as I(s1, ..., sn) – E(A). We can use the sample training data
from Figure 28.6 to illustrate the algorithm.

The attribute RID represents the record identifier used for identifying an individual
record and is an internal attribute. We use it to identify a particular record in our
example. First, we compute the expected information needed to classify the training
data of 6 records as I(s1, s2) where there are two classes: the first class label value cor-
responds to yes and the second to no. So,

I(3,3) = − 0.5log2 0.5 − 0.5log2 0.5 = 1.

Now, we compute the entropy for each of the four attributes as shown below. For
Married = yes, we have s11 = 2, s21 = 1 and I(s11, s21) = 0.92. For Married = no, we have
s12 = 1, s22 = 2 and I(s12, s22) = 0.92. So, the expected information needed to classify
a sample using attribute Married as the partitioning attribute is

E(Married) = 3/6 I(s11, s21) + 3/6 I(s12, s22) = 0.92.

The gain in information, Gain(Married), would be 1 – 0.92 = 0.08. If we follow simi-
lar steps for computing the gain with respect to the other three attributes we end up
with

E(Salary) = 0.33 and Gain(Salary) = 0.67

E(Acct_balance) = 0.92 and Gain(Acct_balance) = 0.08

E(Age) = 0.54 and Gain(Age) = 0.46

Since the greatest gain occurs for attribute Salary, it is chosen as the partitioning
attribute. The root of the tree is created with label Salary and has three branches,
one for each value of Salary. For two of the three values, that is, <20K and >=50K, all
the samples that are partitioned accordingly (records with RIDs 4 and 5 for <20K
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RID Married Salary Acct_balance Age Loanworthy

1 no >=50K <5K >=25 yes

2 yes >=50K >=5K >=25 yes

3 yes 20K. . .50K <5K <25 no

4 no <20K >=5K <25 no

5 no <20K <5K >=25 no

6 yes 20K. . .50K >=5K >=25 yes

Figure 28.6
Sample training data
for classification 
algorithm.
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Salary

{3} {6}
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Class is “no”

Class is “no”

Class is “yes”

Class is “yes”

< 20K
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< 25 >= 25
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Figure 28.7
Decision tree based on sample
training data where the leaf nodes
are represented by a set of RIDs
of the partitioned records.

and records with RIDs 1 and 2 for >=50K) fall within the same class loanworthy no
and loanworthy yes respectively for those two values. So we create a leaf node for
each. The only branch that needs to be expanded is for the value 20K...50K with two
samples, records with RIDs 3 and 6 in the training data. Continuing the process
using these two records, we find that Gain(Married) is 0, Gain(Acct_balance) is 1, and
Gain(Age) is 1.

We can choose either Age or Acct_balance since they both have the largest gain. Let
us choose Age as the partitioning attribute. We add a node with label Age that has
two branches, less than 25, and greater or equal to 25. Each branch partitions the
remaining sample data such that one sample record belongs to each branch and
hence one class. Two leaf nodes are created and we are finished. The final decision
tree is pictured in Figure 28.7.

28.4 Clustering
The previous data mining task of classification deals with partitioning data based
on using a preclassified training sample. However, it is often useful to partition data
without having a training sample; this is also known as unsupervised learning. For
example, in business, it may be important to determine groups of customers who
have similar buying patterns, or in medicine, it may be important to determine
groups of patients who show similar reactions to prescribed drugs. The goal of clus-
tering is to place records into groups, such that records in a group are similar to each
other and dissimilar to records in other groups. The groups are usually disjoint.

An important facet of clustering is the similarity function that is used. When the
data is numeric, a similarity function based on distance is typically used. For exam-
ple, the Euclidean distance can be used to measure similarity. Consider two n-
dimensional data points (records) rj and rk. We can consider the value for the ith
dimension as rji and rki for the two records. The Euclidean distance between points
rj and rk in n-dimensional space is calculated as:

Distance( , ) ...r r r r r r r rj k j k j k jn kn= − + − + + −1 1

2

2 2

2 2
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The smaller the distance between two points, the greater is the similarity as we think
of them. A classic clustering algorithm is the k-Means algorithm, Algorithm 28.4.

Algorithm 28.4. k-Means Clustering Algorithm

Input: a database D, of m records, r1, ..., rm and a desired number of clusters k

Output: set of k clusters that minimizes the squared error criterion

Begin
randomly choose k records as the centroids for the k clusters;
repeat
assign each record, ri, to a cluster such that the distance between ri

and the cluster centroid (mean) is the smallest among the k clusters;
recalculate the centroid (mean) for each cluster based on the records

assigned to the cluster;
until no change;

End;

The algorithm begins by randomly choosing k records to represent the centroids
(means), m1, ..., mk, of the clusters, C1, ..., Ck. All the records are placed in a given
cluster based on the distance between the record and the cluster mean. If the dis-
tance between mi and record rj is the smallest among all cluster means, then record
rj is placed in cluster Ci. Once all records have been initially placed in a cluster, the
mean for each cluster is recomputed. Then the process repeats, by examining each
record again and placing it in the cluster whose mean is closest. Several iterations
may be needed, but the algorithm will converge, although it may terminate at a local
optimum. The terminating condition is usually the squared-error criterion. For
clusters C1, ..., Ck with means m1, ..., mk, the error is defined as:

We will examine how Algorithm 28.4 works with the (two-dimensional) records in
Figure 28.8. Assume that the number of desired clusters k is 2. Let the algorithm
choose records with RID 3 for cluster C1 and RID 6 for cluster C2 as the initial cluster
centroids. The remaining records will be assigned to one of those clusters during the
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RID Age Years_of_service
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Figure 28.8
Sample 2-dimensional
records for clustering
example (the RID 
column is not 
considered).
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first iteration of the repeat loop. The record with RID 1 has a distance from C1 of
22.4 and a distance from C2 of 32.0, so it joins cluster C1. The record with RID 2 has
a distance from C1 of 10.0 and a distance from C2 of 5.0, so it joins cluster C2. The
record with RID 4 has a distance from C1 of 25.5 and a distance from C2 of 36.6, so
it joins cluster C1. The record with RID 5 has a distance from C1 of 20.6 and a dis-
tance from C2 of 29.2, so it joins cluster C1. Now, the new means (centroids) for the
two clusters are computed. The mean for a cluster, Ci, with n records of m dimen-
sions is the vector:

The new mean for C1 is (33.75, 8.75) and the new mean for C2 is (52.5, 25). A sec-
ond iteration proceeds and the six records are placed into the two clusters as follows:
records with RIDs 1, 4, 5 are placed in C1 and records with RIDs 2, 3, 6 are placed in
C2. The mean for C1 and C2 is recomputed as (28.3, 6.7) and (51.7, 21.7), respec-
tively. In the next iteration, all records stay in their previous clusters and the algo-
rithm terminates.

Traditionally, clustering algorithms assume that the entire data set fits in main
memory. More recently, researchers have developed algorithms that are efficient and
are scalable for very large databases. One such algorithm is called BIRCH. BIRCH is
a hybrid approach that uses both a hierarchical clustering approach, which builds a
tree representation of the data, as well as additional clustering methods, which are
applied to the leaf nodes of the tree. Two input parameters are used by the BIRCH
algorithm. One specifies the amount of available main memory and the other is an
initial threshold for the radius of any cluster. Main memory is used to store descrip-
tive cluster information such as the center (mean) of a cluster and the radius of the
cluster (clusters are assumed to be spherical in shape). The radius threshold affects
the number of clusters that are produced. For example, if the radius threshold value
is large, then few clusters of many records will be formed. The algorithm tries to
maintain the number of clusters such that their radius is below the radius threshold.
If available memory is insufficient, then the radius threshold is increased.

The BIRCH algorithm reads the data records sequentially and inserts them into an
in-memory tree structure, which tries to preserve the clustering structure of the
data. The records are inserted into the appropriate leaf nodes (potential clusters)
based on the distance between the record and the cluster center. The leaf node
where the insertion happens may have to split, depending upon the updated center
and radius of the cluster and the radius threshold parameter. Additionally, when
splitting, extra cluster information is stored, and if memory becomes insufficient,
then the radius threshold will be increased. Increasing the radius threshold may
actually produce a side effect of reducing the number of clusters since some nodes
may be merged.

Overall, BIRCH is an efficient clustering method with a linear computational com-
plexity in terms of the number of records to be clustered.
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28.5 Approaches to Other Data 
Mining Problems

28.5.1 Discovery of Sequential Patterns
The discovery of sequential patterns is based on the concept of a sequence of item-
sets. We assume that transactions such as the supermarket-basket transactions we
discussed previously are ordered by time of purchase. That ordering yields a
sequence of itemsets. For example, {milk, bread, juice}, {bread, eggs}, {cookies, milk,
coffee} may be such a sequence of itemsets based on three visits by the same cus-
tomer to the store. The support for a sequence S of itemsets is the percentage of the
given set U of sequences of which S is a subsequence. In this example, {milk, bread,
juice} {bread, eggs} and {bread, eggs} {cookies, milk, coffee} are considered
subsequences. The problem of identifying sequential patterns, then, is to find all
subsequences from the given sets of sequences that have a user-defined minimum
support. The sequence S1, S2, S3, ... is a predictor of the fact that a customer who
buys itemset S1 is likely to buy itemset S2 and then S3, and so on. This prediction is
based on the frequency (support) of this sequence in the past. Various algorithms
have been investigated for sequence detection.

28.5.2 Discovery of Patterns in Time Series
Time series are sequences of events; each event may be a given fixed type of a trans-
action. For example, the closing price of a stock or a fund is an event that occurs
every weekday for each stock and fund. The sequence of these values per stock or
fund constitutes a time series. For a time series, one may look for a variety of pat-
terns by analyzing sequences and subsequences as we did above. For example, we
might find the period during which the stock rose or held steady for n days, or we
might find the longest period over which the stock had a fluctuation of no more
than 1 percent over the previous closing price, or we might find the quarter during
which the stock had the most percentage gain or percentage loss. Time series may be
compared by establishing measures of similarity to identify companies whose stocks
behave in a similar fashion. Analysis and mining of time series is an extended func-
tionality of temporal data management (see Chapter 26).

28.5.3 Regression
Regression is a special application of the classification rule. If a classification rule is
regarded as a function over the variables that maps these variables into a target class
variable, the rule is called a regression rule. A general application of regression
occurs when, instead of mapping a tuple of data from a relation to a specific class,
the value of a variable is predicted based on that tuple. For example, consider a 
relation

LAB_TESTS (patient ID, test 1, test 2, ..., test n)
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which contains values that are results from a series of n tests for one patient. The
target variable that we wish to predict is P, the probability of survival of the patient.
Then the rule for regression takes the form:

(test 1 in range1) and (test 2 in range2) and ... (test n in rangen) ⇒ P = x,
or x < P ≤ y

The choice depends on whether we can predict a unique value of P or a range of val-
ues for P. If we regard P as a function:

P = f (test 1, test 2, ..., test n)

the function is called a regression function to predict P. In general, if the function
appears as

Y = f (X1, X2, ..., Xn),

and f is linear in the domain variables xi, the process of deriving f from a given set of
tuples for <X1, X2, ..., Xn, y> is called linear regression. Linear regression is a com-
monly used statistical technique for fitting a set of observations or points in n
dimensions with the target variable y.

Regression analysis is a very common tool for analysis of data in many research
domains. The discovery of the function to predict the target variable is equivalent to
a data mining operation.

28.5.4 Neural Networks
A neural network is a technique derived from artificial intelligence research that
uses generalized regression and provides an iterative method to carry it out. Neural
networks use the curve-fitting approach to infer a function from a set of samples.
This technique provides a learning approach; it is driven by a test sample that is used
for the initial inference and learning. With this kind of learning method, responses
to new inputs may be able to be interpolated from the known samples. This interpo-
lation, however, depends on the world model (internal representation of the prob-
lem domain) developed by the learning method.

Neural networks can be broadly classified into two categories: supervised and unsu-
pervised networks. Adaptive methods that attempt to reduce the output error are
supervised learning methods, whereas those that develop internal representations
without sample outputs are called unsupervised learning methods.

Neural networks self-adapt; that is, they learn from information about a specific
problem. They perform well on classification tasks and are therefore useful in data
mining. Yet, they are not without problems. Although they learn, they do not pro-
vide a good representation of what they have learned. Their outputs are highly
quantitative and not easy to understand. As another limitation, the internal repre-
sentations developed by neural networks are not unique. Also, in general, neural
networks have trouble modeling time series data. Despite these shortcomings, they
are popular and frequently used by several commercial vendors.
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28.5.5 Genetic Algorithms
Genetic algorithms (GAs) are a class of randomized search procedures capable of
adaptive and robust search over a wide range of search space topologies. Modeled
after the adaptive emergence of biological species from evolutionary mechanisms,
and introduced by Holland,6 GAs have been successfully applied in such diverse
fields as image analysis, scheduling, and engineering design.

Genetic algorithms extend the idea from human genetics of the four-letter alphabet
(based on the A,C,T,G nucleotides) of the human DNA code. The construction of a
genetic algorithm involves devising an alphabet that encodes the solutions to the
decision problem in terms of strings of that alphabet. Strings are equivalent to indi-
viduals. A fitness function defines which solutions can survive and which cannot.
The ways in which solutions can be combined are patterned after the cross-over
operation of cutting and combining strings from a father and a mother. An initial
population of a well-varied population is provided, and a game of evolution is
played in which mutations occur among strings. They combine to produce a new
generation of individuals; the fittest individuals survive and mutate until a family of
successful solutions develops.

The solutions produced by GAs are distinguished from most other search tech-
niques by the following characteristics:

■ A GA search uses a set of solutions during each generation rather than a sin-
gle solution.

■ The search in the string-space represents a much larger parallel search in the
space of encoded solutions.

■ The memory of the search done is represented solely by the set of solutions
available for a generation.

■ A genetic algorithm is a randomized algorithm since search mechanisms use
probabilistic operators.

■ While progressing from one generation to the next, a GA finds near-optimal
balance between knowledge acquisition and exploitation by manipulating
encoded solutions.

Genetic algorithms are used for problem solving and clustering problems. Their
ability to solve problems in parallel provides a powerful tool for data mining. The
drawbacks of GAs include the large overproduction of individual solutions, the ran-
dom character of the searching process, and the high demand on computer process-
ing. In general, substantial computing power is required to achieve anything of
significance with genetic algorithms.

6Holland’s seminal work (1975) entitled Adaptation in Natural and Artificial Systems introduced the idea
of genetic algorithms.
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28.6 Applications of Data Mining
Data mining technologies can be applied to a large variety of decision-making con-
texts in business. In particular, areas of significant payoffs are expected to include
the following:

■ Marketing. Applications include analysis of consumer behavior based on
buying patterns; determination of marketing strategies including advertis-
ing, store location, and targeted mailing; segmentation of customers, stores,
or products; and design of catalogs, store layouts, and advertising cam-
paigns.

■ Finance. Applications include analysis of creditworthiness of clients, seg-
mentation of account receivables, performance analysis of finance invest-
ments like stocks, bonds, and mutual funds; evaluation of financing options;
and fraud detection.

■ Manufacturing. Applications involve optimization of resources like
machines, manpower, and materials; and optimal design of manufacturing
processes, shop-floor layouts, and product design, such as for automobiles
based on customer requirements.

■ Health Care. Applications include discovery of patterns in radiological
images, analysis of microarray (gene-chip) experimental data to cluster genes
and to relate to symptoms or diseases, analysis of side effects of drugs and
effectiveness of certain treatments, optimization of processes within a hospi-
tal, and the relationship of patient wellness data with doctor qualifications.

28.7 Commercial Data Mining Tools
Currently, commercial data mining tools use several common techniques to extract
knowledge. These include association rules, clustering, neural networks, sequenc-
ing, and statistical analysis. We discussed these earlier. Also used are decision trees,
which are a representation of the rules used in classification or clustering, and statis-
tical analyses, which may include regression and many other techniques. Other
commercial products use advanced techniques such as genetic algorithms, case-
based reasoning, Bayesian networks, nonlinear regression, combinatorial optimiza-
tion, pattern matching, and fuzzy logic. In this chapter we have already discussed
some of these.

Most data mining tools use the ODBC (Open Database Connectivity) interface.
ODBC is an industry standard that works with databases; it enables access to data in
most of the popular database programs such as Access, dBASE, Informix, Oracle,
and SQL Server. Some of these software packages provide interfaces to specific data-
base programs; the most common are Oracle, Access, and SQL Server. Most of the
tools work in the Microsoft Windows environment and a few work in the UNIX
operating system. The trend is for all products to operate under the Microsoft
Windows environment. One tool, Data Surveyor, mentions ODMG compliance; see
Chapter 11 where we discuss the ODMG object-oriented standard.
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In general, these programs perform sequential processing in a single machine. Many
of these products work in the client-server mode. Some products incorporate paral-
lel processing in parallel computer architectures and work as a part of online analyt-
ical processing (OLAP) tools.

28.7.1 User Interface
Most of the tools run in a graphical user interface (GUI) environment. Some prod-
ucts include sophisticated visualization techniques to view data and rules (for
example, SGI’s MineSet), and are even able to manipulate data this way interac-
tively. Text interfaces are rare and are more common in tools available for UNIX,
such as IBM’s Intelligent Miner.

28.7.2 Application Programming Interface
Usually, the application programming interface (API) is an optional tool. Most
products do not permit using their internal functions. However, some of them allow
the application programmer to reuse their code. The most common interfaces are C
libraries and Dynamic Link Libraries (DLLs). Some tools include proprietary data-
base command languages.

In Table 28.1 we list 11 representative data mining tools. To date, there are almost
one hundred commercial data mining products available worldwide. Non-U.S.
products include Data Surveyor from the Netherlands and PolyAnalyst from Russia.

28.7.3 Future Directions
Data mining tools are continually evolving, building on ideas from the latest scien-
tific research. Many of these tools incorporate the latest algorithms taken from 
artificial intelligence (AI), statistics, and optimization.

Currently, fast processing is done using modern database techniques—such as dis-
tributed processing—in client-server architectures, in parallel databases, and in data
warehousing. For the future, the trend is toward developing Internet capabilities
more fully. Additionally, hybrid approaches will become commonplace, and pro-
cessing will be done using all resources available. Processing will take advantage of
both parallel and distributed computing environments. This shift is especially
important because modern databases contain very large amounts of information.
Not only are multimedia databases growing, but also image storage and retrieval are
slow operations. Also, the cost of secondary storage is decreasing, so massive infor-
mation storage will be feasible, even for small companies. Thus, data mining pro-
grams will have to deal with larger sets of data of more companies.

Most of data mining software will use the ODBC standard to extract data from busi-
ness databases; proprietary input formats can be expected to disappear. There is a
definite need to include nonstandard data, including images and other multimedia
data, as source data for data mining.



Table 28.1 Some Representative Data Mining Tools

Company Product Technique Platform Interface*

AcknoSoft Kate Decision trees,
Case-based reasoning

Windows UNIX Microsoft Access

Angoss Knowledge 
SEEKER

Decision trees, Statistics Windows ODBC

Business Objects Business Miner Neural nets, Machine learn-
ing

Windows ODBC

CrossZ QueryObject Statistical analysis,
Optimization algorithm

Windows MVS
UNIX

ODBC

Data Distilleries Data Surveyor Comprehensive; can 
mix different types 
of data mining

UNIX ODBC ODMG-
compliant

DBMiner
Technology Inc.

DBMiner OLAP analysis,
Associations,
Classification,
Clustering algorithms

Windows Microsoft 7.0
OLAP

IBM Intelligent Miner Classification,
Association rules,
Predictive models

UNIX (AIX) IBM DB2

Megaputer
Intelligence

PolyAnalyst Symbolic knowledge 
acquisition, Evolutionary
programming

Windows OS/2 ODBC Oracle
DB2

NCR Management
Discovery Tool
(MDT)

Association rules Windows ODBC

Purple Insight MineSet Decision trees,
Association rules

UNIX (Irix) Oracle Sybase
Informix

SAS Enterprise Miner Decision trees,
Association rules, Neural
nets, Regression,
Clustering

UNIX (Solaris)
Windows
Macintosh

ODBC Oracle
AS/400

*ODBC: Open Data Base Connectivity

ODMG: Object Data Management Group
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28.8 Summary
In this chapter we surveyed the important discipline of data mining, which uses
database technology to discover additional knowledge or patterns in the data. We
gave an illustrative example of knowledge discovery in databases, which has a wider
scope than data mining. For data mining, among the various techniques, we focused
on the details of association rule mining, classification, and clustering. We presented
algorithms in each of these areas and illustrated with examples of how those algo-
rithms work.

A variety of other techniques, including the AI-based neural networks and genetic
algorithms, were also briefly discussed. Active research is ongoing in data mining
and we have outlined some of the expected research directions. In the future data-
base technology products market, a great deal of data mining activity is expected.
We summarized 11 out of nearly one hundred data mining tools available; future
research is expected to extend the number and functionality significantly.

Review Questions
28.1. What are the different phases of the knowledge discovery from databases?

Describe a complete application scenario in which new knowledge may be
mined from an existing database of transactions.

28.2. What are the goals or tasks that data mining attempts to facilitate?

28.3. What are the five types of knowledge produced from data mining?

28.4. What are association rules as a type of knowledge? Give a definition of sup-
port and confidence and use them to define an association rule.

28.5. What is the downward closure property? How does it aid in developing an
efficient algorithm for finding association rules, that is, with regard to find-
ing large itemsets?

28.6. What was the motivating factor for the development of the FP-tree algo-
rithm for association rule mining?

28.7. Describe an association rule among hierarchies with an example.

28.8. What is a negative association rule in the context of the hierarchy in Figure
28.3?

28.9. What are the difficulties of mining association rules from large databases?

28.10. What are classification rules and how are decision trees related to them?

28.11. What is entropy and how is it used in building decision trees?

28.12. How does clustering differ from classification?

28.13. Describe neural networks and genetic algorithms as techniques for data
mining. What are the main difficulties in using these techniques?

Review Questions 1063
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Trans_id Items_purchased
101 milk, bread, eggs
102 milk, juice
103 juice, butter
104 milk, bread, eggs
105 coffee, eggs
106 coffee
107 coffee, juice
108 milk, bread, cookies, eggs
109 cookies, butter
110 milk, bread

RID Age City Gender Education Repeat_customer
101 20...30 NY F college YES
102 20...30 SF M graduate YES
103 31...40 NY F college YES
104 51...60 NY F college NO
105 31...40 LA M high school NO
106 41...50 NY F college YES
107 41...50 NY F graduate YES
108 20...30 LA M college YES
109 20...30 NY F high school NO
110 20...30 NY F college YES

Exercises
28.14. Apply the Apriori algorithm to the following data set.

The set of items is {milk, bread, cookies, eggs, butter, coffee, juice}. Use 0.2
for the minimum support value.

28.15. Show two rules that have a confidence of 0.7 or greater for an itemset con-
taining three items from Exercise 28.14.

28.16. For the Partition algorithm, prove that any frequent itemset in the database
must appear as a local frequent itemset in at least one partition.

28.17. Show the FP-tree that would be made for the data from Exercise 28.14.

28.18. Apply the FP-Growth algorithm to the FP-tree from Exercise 28.17 and show
the frequent itemsets.

28.19. Apply the classification algorithm to the following set of data records. The
class attribute is Repeat_customer.



28.20. Consider the following set of two-dimensional records:
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RID Dimension1 Dimension2
1 8 4
2 5 4
3 2 4
4 2 6
5 2 8
6 8 6

Also consider two different clustering schemes: (1) where Cluster1 contains
records {1,2,3} and Cluster2 contains records {4,5,6} and (2) where Cluster1
contains records {1,6} and Cluster2 contains records {2,3,4,5}. Which scheme
is better and why?

28.21. Use the k-Means algorithm to cluster the data from Exercise 28.20. We can
use a value of 3 for K and we can assume that the records with RIDs 1, 3, and
5 are used for the initial cluster centroids (means).

28.22. The k-Means algorithm uses a similarity metric of distance between a record
and a cluster centroid. If the attributes of the records are not quantitative but
categorical in nature, such as Income_level with values {low, medium, high}
or Married with values {Yes, No} or State_of_residence with values {Alabama,
Alaska, ..., Wyoming}, then the distance metric is not meaningful. Define a
more suitable similarity metric that can be used for clustering data records
that contain categorical data.

Selected Bibliography
Literature on data mining comes from several fields, including statistics, mathemat-
ical optimization, machine learning, and artificial intelligence. Chen et al. (1996)
give a good summary of the database perspective on data mining. The book by Han
and Kamber (2001) is an excellent text, describing in detail the different algorithms
and techniques used in the data mining area. Work at IBM Almaden research has
produced a large number of early concepts and algorithms as well as results from
some performance studies. Agrawal et al. (1993) report the first major study on
association rules. Their Apriori algorithm for market basket data in Agrawal and
Srikant (1994) is improved by using partitioning in Savasere et al. (1995); Toivonen
(1996) proposes sampling as a way to reduce the processing effort. Cheung et al.
(1996) extends the partitioning to distributed environments; Lin and Dunham
(1998) propose techniques to overcome problems with data skew. Agrawal et al.
(1993b) discuss the performance perspective on association rules. Mannila et al.
(1994), Park et al. (1995), and Amir et al. (1997) present additional efficient algo-
rithms related to association rules. Han et al. (2000) present the FP-tree algorithm
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discussed in this chapter. Srikant and Agrawal(1995) proposes mining generalized
rules. Savasere et al. (1998) present the first approach to mining negative associa-
tions. Agrawal et al. (1996) describe the Quest system at IBM. Sarawagi et al. (1998)
describe an implementation where association rules are integrated with a relational
database management system. Piatesky-Shapiro and Frawley (1992) have con-
tributed papers from a wide range of topics related to knowledge discovery. Zhang
et al. (1996) present the BIRCH algorithm for clustering large databases.
Information about decision tree learning and the classification algorithm presented
in this chapter can be found in Mitchell (1997).

Adriaans and Zantinge (1996), Fayyad et al. (1997), and Weiss and Indurkhya
(1998) are books devoted to the different aspects of data mining and its use in pre-
diction. The idea of genetic algorithms was proposed by Holland (1975); a good
survey of genetic algorithms appears in Srinivas and Patnaik (1994). Neural net-
works have a vast literature; a comprehensive introduction is available in Lippman
(1987).

Tan et al. (2006) provides a comprehensive introduction to data mining and has a
detailed set of references. Readers are also advised to consult proceedings of two
prominent annual conferences in data mining: the Knowledge Discovery and Data
Mining Conference (KDD), which has been running since 1995, and the SIAM
International Conference on Data Mining (SDM), which has been running since
2001. Links to past conferences may be found at http://dblp.uni-trier.de.

http://dblp.uni-trier.de
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Overview of Data 
Warehousing and OLAP

The increasing processing power and sophistication
of analytical tools and techniques have resulted in

the development of what are known as data warehouses. These data warehouses
provide storage, functionality, and responsiveness to queries beyond the capabilities
of transaction-oriented databases. Accompanying this ever-increasing power is a
great demand to improve the data access performance of databases. As we have seen
throughout this book, traditional databases balance the requirement of data access
with the need to ensure data integrity. In modern organizations, users of data are
often completely removed from the data sources. Many people only need read-
access to data, but still need fast access to a larger volume of data than can conve-
niently be downloaded to the desktop. Often such data comes from multiple
databases. Because many of the analyses performed are recurrent and predictable,
software vendors and systems support staff are designing systems to support these
functions. Presently there is a great need to provide decision makers from middle
management upward with information at the correct level of detail to support deci-
sion making. Data warehousing, online analytical processing (OLAP), and data min-
ing provide this functionality. We gave an introduction to data mining techniques in
Chapter 28. In this chapter we give a broad overview of data warehousing and
OLAP technologies.

29.1 Introduction, Definitions, and Terminology
In Chapter 1 we defined a database as a collection of related data and a database sys-
tem as a database and database software together. A data warehouse is also a collec-
tion of information as well as a supporting system. However, a clear distinction

29chapter 29
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exists. Traditional databases are transactional (relational, object-oriented, network,
or hierarchical). Data warehouses have the distinguishing characteristic that they are
mainly intended for decision-support applications. They are optimized for data
retrieval, not routine transaction processing.

Because data warehouses have been developed in numerous organizations to meet
particular needs, there is no single, canonical definition of the term data warehouse.
Professional magazine articles and books in the popular press have elaborated on
the meaning in a variety of ways. Vendors have capitalized on the popularity of the
term to help market a variety of related products, and consultants have provided a
large variety of services, all under the data warehousing banner. However, data
warehouses are quite distinct from traditional databases in their structure, func-
tioning, performance, and purpose.

W. H. Inmon1 characterized a data warehouse as a subject-oriented, integrated, non-
volatile, time-variant collection of data in support of management’s decisions. Data
warehouses provide access to data for complex analysis, knowledge discovery, and
decision making. They support high-performance demands on an organization’s
data and information. Several types of applications—OLAP, DSS, and data mining
applications—are supported. We define each of these next.

OLAP (online analytical processing) is a term used to describe the analysis of com-
plex data from the data warehouse. In the hands of skilled knowledge workers,
OLAP tools use distributed computing capabilities for analyses that require more
storage and processing power than can be economically and efficiently located on
an individual desktop.

DSS (decision-support systems), also known as EIS—executive information sys-
tems; not to be confused with enterprise integration systems—support an organiza-
tion’s leading decision makers with higher-level data for complex and important
decisions. Data mining (which we discussed in Chapter 28) is used for knowledge
discovery, the process of searching data for unanticipated new knowledge.

Traditional databases support online transaction processing (OLTP), which
includes insertions, updates, and deletions, while also supporting information
query requirements. Traditional relational databases are optimized to process
queries that may touch a small part of the database and transactions that deal with
insertions or updates of a few tuples per relation to process. Thus, they cannot be
optimized for OLAP, DSS, or data mining. By contrast, data warehouses are
designed precisely to support efficient extraction, processing, and presentation for
analytic and decision-making purposes. In comparison to traditional databases,
data warehouses generally contain very large amounts of data from multiple sources
that may include databases from different data models and sometimes files acquired
from independent systems and platforms.

1Inmon (1992) is credited with initially using the term warehouse. The latest edition of his work is Inmon
(2005).
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Figure 29.1
Sample transactions in
market-basket model.

29.2 Characteristics of Data Warehouses
To discuss data warehouses and distinguish them from transactional databases calls
for an appropriate data model. The multidimensional data model (explained in
more detail in Section 29.3) is a good fit for OLAP and decision-support technolo-
gies. In contrast to multidatabases, which provide access to disjoint and usually het-
erogeneous databases, a data warehouse is frequently a store of integrated data from
multiple sources, processed for storage in a multidimensional model. Unlike most
transactional databases, data warehouses typically support time-series and trend
analysis, both of which require more historical data than is generally maintained in
transactional databases.

Compared with transactional databases, data warehouses are nonvolatile. This
means that information in the data warehouse changes far less often and may be
regarded as non–real-time with periodic updating. In transactional systems, transac-
tions are the unit and are the agent of change to the database; by contrast, data ware-
house information is much more coarse-grained and is refreshed according to a
careful choice of refresh policy, usually incremental. Warehouse updates are handled
by the warehouse’s acquisition component that provides all required preprocessing.

We can also describe data warehousing more generally as a collection of decision sup-
port technologies, aimed at enabling the knowledge worker (executive, manager, ana-
lyst) to make better and faster decisions.2 Figure 29.1 gives an overview of the
conceptual structure of a data warehouse. It shows the entire data warehousing
process, which includes possible cleaning and reformatting of data before loading it
into the warehouse. This process is handled by tools known as ETL (extraction,
transformation, and loading) tools. At the back end of the process, OLAP, data min-
ing, and DSS may generate new relevant information such as rules; this information
is shown in the figure going back into the warehouse. The figure also shows that
data sources may include files.

2Chaudhuri and Dayal (1997) provide an excellent tutorial on the topic, with this as a starting definition.
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Data warehouses have the following distinctive characteristics:3

■ Multidimensional conceptual view

■ Generic dimensionality

■ Unlimited dimensions and aggregation levels

■ Unrestricted cross-dimensional operations

■ Dynamic sparse matrix handling

■ Client-server architecture

■ Multiuser support

■ Accessibility

■ Transparency

■ Intuitive data manipulation

■ Consistent reporting performance

■ Flexible reporting

Because they encompass large volumes of data, data warehouses are generally an
order of magnitude (sometimes two orders of magnitude) larger than the source
databases. The sheer volume of data (likely to be in terabytes or even petabytes) is
an issue that has been dealt with through enterprise-wide data warehouses, virtual
data warehouses, and data marts:

■ Enterprise-wide data warehouses are huge projects requiring massive
investment of time and resources.

■ Virtual data warehouses provide views of operational databases that are
materialized for efficient access.

■ Data marts generally are targeted to a subset of the organization, such as a
department, and are more tightly focused.

29.3 Data Modeling for Data Warehouses
Multidimensional models take advantage of inherent relationships in data to popu-
late data in multidimensional matrices called data cubes. (These may be called
hypercubes if they have more than three dimensions.) For data that lends itself to
dimensional formatting, query performance in multidimensional matrices can be
much better than in the relational data model. Three examples of dimensions in a
corporate data warehouse are the corporation’s fiscal periods, products, and
regions.

A standard spreadsheet is a two-dimensional matrix. One example would be a
spreadsheet of regional sales by product for a particular time period. Products could
be shown as rows, with sales revenues for each region comprising the columns.
(Figure 29.2 shows this two-dimensional organization.) Adding a time dimension,

3Codd and Salley (1993) coined the term OLAP and mentioned these characteristics. We have
reordered their original list.
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such as an organization’s fiscal quarters, would produce a three-dimensional
matrix, which could be represented using a data cube.

Figure 29.3 shows a three-dimensional data cube that organizes product sales data by
fiscal quarters and sales regions. Each cell could contain data for a specific product,
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specific fiscal quarter, and specific region. By including additional dimensions, a data
hypercube could be produced, although more than three dimensions cannot be eas-
ily visualized or graphically presented. The data can be queried directly in any com-
bination of dimensions, bypassing complex database queries. Tools exist for viewing
data according to the user’s choice of dimensions.

Changing from one-dimensional hierarchy (orientation) to another is easily accom-
plished in a data cube with a technique called pivoting (also called rotation). In this
technique the data cube can be thought of as rotating to show a different orienta-
tion of the axes. For example, you might pivot the data cube to show regional sales
revenues as rows, the fiscal quarter revenue totals as columns, and the company’s
products in the third dimension (Figure 29.4). Hence, this technique is equivalent to
having a regional sales table for each product separately, where each table shows
quarterly sales for that product region by region.

Multidimensional models lend themselves readily to hierarchical views in what is
known as roll-up display and drill-down display. A roll-up display moves up the
hierarchy, grouping into larger units along a dimension (for example, summing
weekly data by quarter or by year). Figure 29.5 shows a roll-up display that moves
from individual products to a coarser-grain of product categories. Shown in Figure
29.6, a drill-down display provides the opposite capability, furnishing a finer-
grained view, perhaps disaggregating country sales by region and then regional sales
by subregion and also breaking up products by styles.
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The multidimensional storage model involves two types of tables: dimension tables
and fact tables. A dimension table consists of tuples of attributes of the dimension.
A fact table can be thought of as having tuples, one per a recorded fact. This fact
contains some measured or observed variable(s) and identifies it (them) with point-
ers to dimension tables. The fact table contains the data, and the dimensions iden-
tify each tuple in that data. Figure 29.7 contains an example of a fact table that can
be viewed from the perspective of multiple dimension tables.

Two common multidimensional schemas are the star schema and the snowflake
schema. The star schema consists of a fact table with a single table for each dimen-
sion (Figure 29.7). The snowflake schema is a variation on the star schema in which

A
B
C
D

P123
Styles

P124
Styles

P125
Styles

A
B
C

A
B
C
D

Sub_reg 1 Sub_reg 2

Region 1 Region 2

Sub_reg 3 Sub_reg 4 Sub_reg 1

Figure 29.6
The drill-down 
operation.



1074 Chapter 29 Overview of Data Warehousing and OLAP

Dimension table

Product

Prod_no
Prod_name
Prod_descr
Prod_style
Prod_line

Fact table

Business results

Product
Quarter
Region
Sales_revenue

Dimension table

Fiscal quarter

Qtr
Year
Beg_date
End_date

Dimension table

Region
Subregion

Figure 29.7
A star schema with
fact and dimensional
tables.

Dimension tables

Pname

Prod_name
Prod_descr Product

Prod_no
Prod_name
Style
Prod_line_no

Fact table

Business results

Product
Quarter
Region
Revenue

Pline

Prod_line_no
Prod_line_name

Dimension tables

Fiscal quarter

Qtr
Year
Beg_date

FQ dates

Beg_date
End_date

Sales revenue

Region
Subregion

Figure 29.8
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the dimensional tables from a star schema are organized into a hierarchy by normal-
izing them (Figure 29.8). Some installations are normalizing data warehouses up to
the third normal form so that they can access the data warehouse to the finest level
of detail. A fact constellation is a set of fact tables that share some dimension tables.
Figure 29.9 shows a fact constellation with two fact tables, business results and busi-
ness forecast. These share the dimension table called product. Fact constellations
limit the possible queries for the warehouse.

Data warehouse storage also utilizes indexing techniques to support high-
performance access (see Chapter 18 for a discussion of indexing). A technique
called bitmap indexing constructs a bit vector for each value in a domain (column)
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Figure 29.9
A fact constellation.

being indexed. It works very well for domains of low cardinality. There is a 1 bit
placed in the jth position in the vector if the jth row contains the value being
indexed. For example, imagine an inventory of 100,000 cars with a bitmap index on
car size. If there are four car sizes—economy, compact, mid-size, and full-size—
there will be four bit vectors, each containing 100,000 bits (12.5K) for a total index
size of 50K. Bitmap indexing can provide considerable input/output and storage
space advantages in low-cardinality domains. With bit vectors a bitmap index can
provide dramatic improvements in comparison, aggregation, and join performance.

In a star schema, dimensional data can be indexed to tuples in the fact table by join
indexing. Join indexes are traditional indexes to maintain relationships between
primary key and foreign key values. They relate the values of a dimension of a star
schema to rows in the fact table. For example, consider a sales fact table that has city
and fiscal quarter as dimensions. If there is a join index on city, for each city the join
index maintains the tuple IDs of tuples containing that city. Join indexes may
involve multiple dimensions.

Data warehouse storage can facilitate access to summary data by taking further
advantage of the nonvolatility of data warehouses and a degree of predictability of
the analyses that will be performed using them. Two approaches have been used: (1)
smaller tables including summary data such as quarterly sales or revenue by product
line, and (2) encoding of level (for example, weekly, quarterly, annual) into existing
tables. By comparison, the overhead of creating and maintaining such aggregations
would likely be excessive in a volatile, transaction-oriented database.

29.4 Building a Data Warehouse
In constructing a data warehouse, builders should take a broad view of the antici-
pated use of the warehouse. There is no way to anticipate all possible queries or
analyses during the design phase. However, the design should specifically support
ad-hoc querying, that is, accessing data with any meaningful combination of values
for the attributes in the dimension or fact tables. For example, a marketing-
intensive consumer-products company would require different ways of organizing
the data warehouse than would a nonprofit charity focused on fund raising. An
appropriate schema should be chosen that reflects anticipated usage.
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Acquisition of data for the warehouse involves the following steps:

1. The data must be extracted from multiple, heterogeneous sources, for exam-
ple, databases or other data feeds such as those containing financial market
data or environmental data.

2. Data must be formatted for consistency within the warehouse. Names,
meanings, and domains of data from unrelated sources must be reconciled.
For instance, subsidiary companies of a large corporation may have different
fiscal calendars with quarters ending on different dates, making it difficult to
aggregate financial data by quarter. Various credit cards may report their
transactions differently, making it difficult to compute all credit sales. These
format inconsistencies must be resolved.

3. The data must be cleaned to ensure validity. Data cleaning is an involved and
complex process that has been identified as the largest labor-demanding
component of data warehouse construction. For input data, cleaning must
occur before the data is loaded into the warehouse. There is nothing about
cleaning data that is specific to data warehousing and that could not be
applied to a host database. However, since input data must be examined and
formatted consistently, data warehouse builders should take this opportu-
nity to check for validity and quality. Recognizing erroneous and incomplete
data is difficult to automate, and cleaning that requires automatic error cor-
rection can be even tougher. Some aspects, such as domain checking, are eas-
ily coded into data cleaning routines, but automatic recognition of other
data problems can be more challenging. (For example, one might require
that City = ‘San Francisco’ together with State = ‘CT’ be recognized as an
incorrect combination.) After such problems have been taken care of, similar
data from different sources must be coordinated for loading into the ware-
house. As data managers in the organization discover that their data is being
cleaned for input into the warehouse, they will likely want to upgrade their
data with the cleaned data. The process of returning cleaned data to the
source is called backflushing (see Figure 29.1).

4. The data must be fitted into the data model of the warehouse. Data from the
various sources must be installed in the data model of the warehouse. Data
may have to be converted from relational, object-oriented, or legacy data-
bases (network and/or hierarchical) to a multidimensional model.

5. The data must be loaded into the warehouse. The sheer volume of data in the
warehouse makes loading the data a significant task. Monitoring tools for
loads as well as methods to recover from incomplete or incorrect loads are
required. With the huge volume of data in the warehouse, incremental
updating is usually the only feasible approach. The refresh policy will proba-
bly emerge as a compromise that takes into account the answers to the fol-
lowing questions:

■ How up-to-date must the data be?

■ Can the warehouse go offline, and for how long?

■ What are the data interdependencies?
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■ What is the storage availability?

■ What are the distribution requirements (such as for replication and parti-
tioning)?

■ What is the loading time (including cleaning, formatting, copying, trans-
mitting, and overhead such as index rebuilding)?

As we have said, databases must strike a balance between efficiency in transaction
processing and supporting query requirements (ad hoc user requests), but a data
warehouse is typically optimized for access from a decision maker’s needs. Data
storage in a data warehouse reflects this specialization and involves the following
processes:

■ Storing the data according to the data model of the warehouse
■ Creating and maintaining required data structures
■ Creating and maintaining appropriate access paths
■ Providing for time-variant data as new data are added
■ Supporting the updating of warehouse data
■ Refreshing the data
■ Purging data

Although adequate time can be devoted initially to constructing the warehouse, the
sheer volume of data in the warehouse generally makes it impossible to simply
reload the warehouse in its entirety later on. Alternatives include selective (partial)
refreshing of data and separate warehouse versions (requiring double storage capac-
ity for the warehouse!). When the warehouse uses an incremental data refreshing
mechanism, data may need to be periodically purged; for example, a warehouse that
maintains data on the previous twelve business quarters may periodically purge its
data each year.

Data warehouses must also be designed with full consideration of the environment
in which they will reside. Important design considerations include the following:

■ Usage projections

■ The fit of the data model

■ Characteristics of available sources

■ Design of the metadata component

■ Modular component design

■ Design for manageability and change

■ Considerations of distributed and parallel architecture

We discuss each of these in turn. Warehouse design is initially driven by usage pro-
jections; that is, by expectations about who will use the warehouse and how they
will use it. Choice of a data model to support this usage is a key initial decision.
Usage projections and the characteristics of the warehouse’s data sources are both
taken into account. Modular design is a practical necessity to allow the warehouse to
evolve with the organization and its information environment. Additionally, a well-
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built data warehouse must be designed for maintainability, enabling the warehouse
managers to plan for and manage change effectively while providing optimal sup-
port to users.

You may recall the term metadata from Chapter 1; metadata was defined as the
description of a database including its schema definition. The metadata repository
is a key data warehouse component. The metadata repository includes both technical
and business metadata. The first, technical metadata, covers details of acquisition
processing, storage structures, data descriptions, warehouse operations and mainte-
nance, and access support functionality. The second, business metadata, includes
the relevant business rules and organizational details supporting the warehouse.

The architecture of the organization’s distributed computing environment is a
major determining characteristic for the design of the warehouse.

There are two basic distributed architectures: the distributed warehouse and the
federated warehouse. For a distributed warehouse, all the issues of distributed
databases are relevant, for example, replication, partitioning, communications, and
consistency concerns. A distributed architecture can provide benefits particularly
important to warehouse performance, such as improved load balancing, scalability
of performance, and higher availability. A single replicated metadata repository
would reside at each distribution site. The idea of the federated warehouse is like
that of the federated database: a decentralized confederation of autonomous data
warehouses, each with its own metadata repository. Given the magnitude of the
challenge inherent to data warehouses, it is likely that such federations will consist
of smaller scale components, such as data marts. Large organizations may choose to
federate data marts rather than build huge data warehouses.

29.5 Typical Functionality 
of a Data Warehouse

Data warehouses exist to facilitate complex, data-intensive, and frequent ad hoc
queries. Accordingly, data warehouses must provide far greater and more efficient
query support than is demanded of transactional databases. The data warehouse
access component supports enhanced spreadsheet functionality, efficient query
processing, structured queries, ad hoc queries, data mining, and materialized views.
In particular, enhanced spreadsheet functionality includes support for state-of-the-
art spreadsheet applications (for example, MS Excel) as well as for OLAP applica-
tions programs. These offer preprogrammed functionalities such as the following:

■ Roll-up. Data is summarized with increasing generalization (for example,
weekly to quarterly to annually).

■ Drill-down. Increasing levels of detail are revealed (the complement of roll-
up).

■ Pivot. Cross tabulation (also referred to as rotation) is performed.

■ Slice and dice. Projection operations are performed on the dimensions.

■ Sorting. Data is sorted by ordinal value.
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■ Selection. Data is available by value or range.

■ Derived (computed) attributes. Attributes are computed by operations on
stored and derived values.

Because data warehouses are free from the restrictions of the transactional environ-
ment, there is an increased efficiency in query processing. Among the tools and
techniques used are query transformation; index intersection and union; special
ROLAP (relational OLAP) and MOLAP (multidimensional OLAP) functions; SQL
extensions; advanced join methods; and intelligent scanning (as in piggy-backing
multiple queries).

Improved performance has also been attained with parallel processing. Parallel
server architectures include symmetric multiprocessor (SMP), cluster, and mas-
sively parallel processing (MPP), and combinations of these.

Knowledge workers and decision makers use tools ranging from parametric queries
to ad hoc queries to data mining. Thus, the access component of the data warehouse
must provide support for structured queries (both parametric and ad hoc).
Together, these make up a managed query environment. Data mining itself uses
techniques from statistical analysis and artificial intelligence. Statistical analysis can
be performed by advanced spreadsheets, by sophisticated statistical analysis soft-
ware, or by custom-written programs. Techniques such as lagging, moving averages,
and regression analysis are also commonly employed. Artificial intelligence tech-
niques, which may include genetic algorithms and neural networks, are used for
classification and are employed to discover knowledge from the data warehouse that
may be unexpected or difficult to specify in queries. (We treat data mining in detail
in Chapter 28.)

29.6 Data Warehouse versus Views
Some people have considered data warehouses to be an extension of database views.
Earlier we mentioned materialized views as one way of meeting requirements for
improved access to data (see Section 5.3 for a discussion of views). Materialized
views have been explored for their performance enhancement. Views, however, pro-
vide only a subset of the functions and capabilities of data warehouses. Views and
data warehouses are alike in that they both have read-only extracts from databases
and subject orientation. However, data warehouses are different from views in the
following ways:

■ Data warehouses exist as persistent storage instead of being materialized on
demand.

■ Data warehouses are not usually relational, but rather multidimensional.
Views of a relational database are relational.

■ Data warehouses can be indexed to optimize performance. Views cannot be
indexed independent of the underlying databases.

■ Data warehouses characteristically provide specific support of functionality;
views cannot.
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■ Data warehouses provide large amounts of integrated and often temporal
data, generally more than is contained in one database, whereas views are an
extract of a database.

29.7 Difficulties of Implementing 
Data Warehouses

Some significant operational issues arise with data warehousing: construction,
administration, and quality control. Project management—the design, construc-
tion, and implementation of the warehouse—is an important and challenging con-
sideration that should not be underestimated. The building of an enterprise-wide
warehouse in a large organization is a major undertaking, potentially taking years
from conceptualization to implementation. Because of the difficulty and amount of
lead time required for such an undertaking, the widespread development and
deployment of data marts may provide an attractive alternative, especially to those
organizations with urgent needs for OLAP, DSS, and/or data mining support.

The administration of a data warehouse is an intensive enterprise, proportional to
the size and complexity of the warehouse. An organization that attempts to admin-
ister a data warehouse must realistically understand the complex nature of its
administration. Although designed for read access, a data warehouse is no more a
static structure than any of its information sources. Source databases can be
expected to evolve. The warehouse’s schema and acquisition component must be
expected to be updated to handle these evolutions.

A significant issue in data warehousing is the quality control of data. Both quality
and consistency of data are major concerns. Although the data passes through a
cleaning function during acquisition, quality and consistency remain significant
issues for the database administrator. Melding data from heterogeneous and dis-
parate sources is a major challenge given differences in naming, domain definitions,
identification numbers, and the like. Every time a source database changes, the data
warehouse administrator must consider the possible interactions with other ele-
ments of the warehouse.

Usage projections should be estimated conservatively prior to construction of the
data warehouse and should be revised continually to reflect current requirements.
As utilization patterns become clear and change over time, storage and access paths
can be tuned to remain optimized for support of the organization’s use of its ware-
house. This activity should continue throughout the life of the warehouse in order
to remain ahead of demand. The warehouse should also be designed to accommo-
date the addition and attrition of data sources without major redesign. Sources and
source data will evolve, and the warehouse must accommodate such change. Fitting
the available source data into the data model of the warehouse will be a continual
challenge, a task that is as much art as science. Because there is continual rapid
change in technologies, both the requirements and capabilities of the warehouse
will change considerably over time. Additionally, data warehousing technology itself
will continue to evolve for some time so that component structures and functional-
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ities will continually be upgraded. This certain change is excellent motivation for
having fully modular design of components.

Administration of a data warehouse will require far broader skills than are needed
for traditional database administration. A team of highly skilled technical experts
with overlapping areas of expertise will likely be needed, rather than a single indi-
vidual. Like database administration, data warehouse administration is only partly
technical; a large part of the responsibility requires working effectively with all the
members of the organization with an interest in the data warehouse. However diffi-
cult that can be at times for database administrators, it is that much more challeng-
ing for data warehouse administrators, as the scope of their responsibilities is
considerably broader.

Design of the management function and selection of the management team for a
database warehouse are crucial. Managing the data warehouse in a large organization
will surely be a major task. Many commercial tools are available to support manage-
ment functions. Effective data warehouse management will certainly be a team func-
tion, requiring a wide set of technical skills, careful coordination, and effective
leadership. Just as we must prepare for the evolution of the warehouse, we must also
recognize that the skills of the management team will, of necessity, evolve with it.

29.8 Summary
In this chapter we surveyed the field known as data warehousing. Data warehousing
can be seen as a process that requires a variety of activities to precede it. In contrast,
data mining (see Chapter 28) may be thought of as an activity that draws knowledge
from an existing data warehouse. We introduced key concepts related to data ware-
housing and we discussed the special functionality associated with a multidimen-
sional view of data. We also discussed the ways in which data warehouses supply
decision makers with information at the correct level of detail, based on an appro-
priate organization and perspective.

Review Questions
29.1. What is a data warehouse? How does it differ from a database?

29.2. Define the terms: OLAP (online analytical processing), ROLAP (relational
OLAP), MOLAP (multidimensional OLAP), and DSS (decision-support 
systems).

29.3. Describe the characteristics of a data warehouse. Divide them into function-
ality of a warehouse and advantages users derive from it.

29.4. What is the multidimensional data model? How is it used in data ware-
housing?

29.5. Define the following terms: star schema, snowflake schema, fact constella-
tion, data marts.
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29.6. What types of indexes are built for a warehouse? Illustrate the uses for each
with an example.

29.7. Describe the steps of building a warehouse.

29.8. What considerations play a major role in the design of a warehouse?

29.9. Describe the functions a user can perform on a data warehouse and illustrate
the results of these functions on a sample multidimensional data warehouse.

29.10. How is the concept of a relational view related to a data warehouse and data
marts? In what way are they different?

29.11. List the difficulties in implementing a data warehouse.

29.12. List the open issues and research problems in data warehousing.

Selected Bibliography
Inmon (1992, 2005) is credited for giving the term wide acceptance. Codd and
Salley (1993) popularized the term online analytical processing (OLAP) and
defined a set of characteristics for data warehouses to support OLAP. Kimball
(1996) is known for his contribution to the development of the data warehousing
field. Mattison (1996) is one of the several books on data warehousing that gives a
comprehensive analysis of techniques available in data warehouses and the strate-
gies companies should use in deploying them. Ponniah (2002) gives a very good
practical overview of the data warehouse building process from requirements 
collection to deployment maintenance. Bischoff and Alexander (1997) is a compila-
tion of advice from experts. Chaudhuri and Dayal (1997) give an excellent tutorial
on the topic, while Widom (1995) points to a number of outstanding research 
problems.



1083

Alternative Diagrammatic
Notations for ER Models

Figure A.1 shows a number of different diagram-
matic notations for representing ER and EER

model concepts. Unfortunately, there is no standard notation: different database
design practitioners prefer different notations. Similarly, various CASE (computer-
aided software engineering) tools and OOA (object-oriented analysis) methodolo-
gies use various notations. Some notations are associated with models that have
additional concepts and constraints beyond those of the ER and EER models
described in Chapters 7 through 9, while other models have fewer concepts and
constraints. The notation we used in Chapter 7 is quite close to the original notation
for ER diagrams, which is still widely used. We discuss some alternate notations
here.

Figure A.1(a) shows different notations for displaying entity types/classes, attrib-
utes, and relationships. In Chapters 7 through 9, we used the symbols marked (i) in
Figure A.1(a)—namely, rectangle, oval, and diamond. Notice that symbol (ii) for
entity types/classes, symbol (ii) for attributes, and symbol (ii) for relationships are
similar, but they are used by different methodologies to represent three different
concepts. The straight line symbol (iii) for representing relationships is used by sev-
eral tools and methodologies.

Figure A.1(b) shows some notations for attaching attributes to entity types. We used
notation (i). Notation (ii) uses the third notation (iii) for attributes from Figure
A.1(a). The last two notations in Figure A.1(b)—(iii) and (iv)—are popular in OOA
methodologies and in some CASE tools. In particular, the last notation displays
both the attributes and the methods of a class, separated by a horizontal line.

Aappendix A
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Figure A.1
Alternative notations. (a) Symbols for entity type/class, attribute, and relationship. (b) Displaying
attributes. (c) Displaying cardinality ratios. (d) Various (min, max) notations. (e) Notations for 
displaying specialization/generalization.
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Figure A.1(c) shows various notations for representing the cardinality ratio of
binary relationships. We used notation (i) in Chapters 7 through 9. Notation (ii)—
known as the chicken feet notation—is quite popular. Notation (iv) uses the arrow as
a functional reference (from the N to the 1 side) and resembles our notation for for-
eign keys in the relational model (see Figure 9.2); notation (v)—used in Bachman
diagrams and the network data model—uses the arrow in the reverse direction (from
the 1 to the N side). For a 1:1 relationship, (ii) uses a straight line without any
chicken feet; (iii) makes both halves of the diamond white; and (iv) places arrow-
heads on both sides. For an M:N relationship, (ii) uses chicken feet at both ends of
the line; (iii) makes both halves of the diamond black; and (iv) does not display any
arrowheads.

Figure A.1(d) shows several variations for displaying (min, max) constraints, which
are used to display both cardinality ratio and total/partial participation. We mostly
used notation (i). Notation (ii) is the alternative notation we used in Figure 7.15 and
discussed in Section 7.7.4. Recall that our notation specifies the constraint that each
entity must participate in at least min and at most max relationship instances.
Hence, for a 1:1 relationship, both max values are 1; for M:N, both max values are n.
A min value greater than 0 (zero) specifies total participation (existence depen-
dency). In methodologies that use the straight line for displaying relationships, it is
common to reverse the positioning of the (min, max) constraints, as shown in (iii); a
variation common in some tools (and in UML notation) is shown in (v). Another
popular technique—which follows the same positioning as (iii)—is to display the
min as o (“oh” or circle, which stands for zero) or as | (vertical dash, which stands
for 1), and to display the max as | (vertical dash, which stands for 1) or as chicken
feet (which stands for n), as shown in (iv).

Figure A.1(e) shows some notations for displaying specialization/generalization. We
used notation (i) in Chapter 8, where a d in the circle specifies that the subclasses
(S1, S2, and S3) are disjoint and an o in the circle specifies overlapping subclasses.
Notation (ii) uses G (for generalization) to specify disjoint, and Gs to specify over-
lapping; some notations use the solid arrow, while others use the empty arrow
(shown at the side). Notation (iii) uses a triangle pointing toward the superclass,
and notation (v) uses a triangle pointing toward the subclasses; it is also possible to
use both notations in the same methodology, with (iii) indicating generalization
and (v) indicating specialization. Notation (iv) places the boxes representing sub-
classes within the box representing the superclass. Of the notations based on (vi),
some use a single-lined arrow, and others use a double-lined arrow (shown at the
side).

The notations shown in Figure A.1 show only some of the diagrammatic symbols
that have been used or suggested for displaying database conceptual schemes. Other
notations, as well as various combinations of the preceding, have also been used. It
would be useful to establish a standard that everyone would adhere to, in order to
prevent misunderstandings and reduce confusion.
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Parameters of Disks

The most important disk parameter is the time
required to locate an arbitrary disk block, given its

block address, and then to transfer the block between the disk and a main memory
buffer. This is the random access time for accessing a disk block. There are three
time components to consider as follows:

1. Seek time (s). This is the time needed to mechanically position the
read/write head on the correct track for movable-head disks. (For fixed-head
disks, it is the time needed to electronically switch to the appropriate
read/write head.) For movable-head disks, this time varies, depending on the
distance between the current track under the read/write head and the track
specified in the block address. Usually, the disk manufacturer provides an
average seek time in milliseconds. The typical range of average seek time is 4
to 10 msec. This is the main culprit for the delay involved in transferring
blocks between disk and memory.

2. Rotational delay (rd). Once the read/write head is at the correct track, the
user must wait for the beginning of the required block to rotate into position
under the read/write head. On average, this takes about the time for half a
revolution of the disk, but it actually ranges from immediate access (if the
start of the required block is in position under the read/write head right after
the seek) to a full disk revolution (if the start of the required block just passed
the read/write head after the seek). If the speed of disk rotation is p revolu-
tions per minute (rpm), then the average rotational delay rd is given by

rd = (1/2) * (1/p) min = (60 * 1000)/(2 * p) msec = 30000/p msec

A typical value for p is 10,000 rpm, which gives a rotational delay of rd = 3
msec. For fixed-head disks, where the seek time is negligible, this component
causes the greatest delay in transferring a disk block.

Bappendix B
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3. Block transfer time (btt). Once the read/write head is at the beginning of
the required block, some time is needed to transfer the data in the block.
This block transfer time depends on the block size, track size, and rotational
speed. If the transfer rate for the disk is tr bytes/msec and the block size is B
bytes, then

btt = B/tr msec

If we have a track size of 50 Kbytes and p is 3600 rpm, then the transfer rate
in bytes/msec is

tr = (50 * 1000)/(60 * 1000/3600) = 3000 bytes/msec

In this case, btt = B/3000 msec, where B is the block size in bytes.

The average time (s) needed to find and transfer a block, given its block address, is
estimated by

(s + rd + btt) msec

This holds for either reading or writing a block. The principal method of reducing
this time is to transfer several blocks that are stored on one or more tracks of the
same cylinder; then the seek time is required for the first block only. To transfer con-
secutively k noncontiguous blocks that are on the same cylinder, we need approxi-
mately

s + (k * (rd + btt)) msec

In this case, we need two or more buffers in main storage because we are continu-
ously reading or writing the k blocks, as we discussed in Chapter 17. The transfer
time per block is reduced even further when consecutive blocks on the same track or
cylinder are transferred. This eliminates the rotational delay for all but the first
block, so the estimate for transferring k consecutive blocks is

s + rd + (k * btt) msec

A more accurate estimate for transferring consecutive blocks takes into account the
interblock gap (see Section 17.2.1), which includes the information that enables the
read/write head to determine which block it is about to read. Usually, the disk man-
ufacturer provides a bulk transfer rate (btr) that takes the gap size into account
when reading consecutively stored blocks. If the gap size is G bytes, then

btr = (B/(B + G)) * tr bytes/msec

The bulk transfer rate is the rate of transferring useful bytes in the data blocks. The
disk read/write head must go over all bytes on a track as the disk rotates, including
the bytes in the interblock gaps, which store control information but not real data.
When the bulk transfer rate is used, the time needed to transfer the useful data in
one block out of several consecutive blocks is B/btr. Hence, the estimated time to
read k blocks consecutively stored on the same cylinder becomes

s + rd + (k * (B/btr)) msec
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Another parameter of disks is the rewrite time. This is useful in cases when we read
a block from the disk into a main memory buffer, update the buffer, and then write
the buffer back to the same disk block on which it was stored. In many cases, the
time required to update the buffer in main memory is less than the time required
for one disk revolution. If we know that the buffer is ready for rewriting, the system
can keep the disk heads on the same track, and during the next disk revolution the
updated buffer is rewritten back to the disk block. Hence, the rewrite time Trw, is
usually estimated to be the time needed for one disk revolution:

Trw = 2 * rd msec = 60000/p msec

To summarize, the following is a list of the parameters we have discussed and the
symbols we use for them:

Seek time: s msec

Rotational delay: rd msec

Block transfer time: btt msec

Rewrite time: Trw msec

Transfer rate: tr bytes/msec

Bulk transfer rate: btr bytes/msec

Block size: B bytes

Interblock gap size: G bytes

Disk speed: p rpm (revolutions per minute)
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Overview of the QBE 
Language

The Query-By-Example (QBE) language is impor-
tant because it is one of the first graphical query

languages with minimum syntax developed for database systems. It was developed
at IBM Research and is available as an IBM commercial product as part of the QMF
(Query Management Facility) interface option to DB2. The language was also
implemented in the Paradox DBMS, and is related to a point-and-click type inter-
face in the Microsoft Access DBMS. It differs from SQL in that the user does not
have to explicitly specify a query using a fixed syntax; rather, the query is formulated
by filling in templates of relations that are displayed on a monitor screen. Figure
C.1 shows how these templates may look for the database of Figure 3.5. The user
does not have to remember the names of attributes or relations because they are dis-
played as part of these templates. Additionally, the user does not have to follow rigid
syntax rules for query specification; rather, constants and variables are entered in
the columns of the templates to construct an example related to the retrieval or
update request. QBE is related to the domain relational calculus, as we shall see, and
its original specification has been shown to be relationally complete.

C.1 Basic Retrievals in QBE
In QBE retrieval queries are specified by filling in one or more rows in the templates
of the tables. For a single relation query, we enter either constants or example ele-
ments (a QBE term) in the columns of the template of that relation. An example
element stands for a domain variable and is specified as an example value preceded
by the underscore character (_). Additionally, a P. prefix (called the P dot operator)
is entered in certain columns to indicate that we would like to print (or display) 

Cappendix C
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values in those columns for our result. The constants specify values that must be
exactly matched in those columns.

For example, consider the query Q0: Retrieve the birth date and address of John B.
Smith. In Figures C.2(a) through C.2(d) we show how this query can be specified in
a progressively more terse form in QBE. In Figure C.2(a) an example of an employee
is presented as the type of row that we are interested in. By leaving John B. Smith as
constants in the Fname, Minit, and Lname columns, we are specifying an exact match
in those columns. The rest of the columns are preceded by an underscore indicating
that they are domain variables (example elements). The P. prefix is placed in the
Bdate and Address columns to indicate that we would like to output value(s) in
those columns.

Q0 can be abbreviated as shown in Figure C.2(b). There is no need to specify exam-
ple values for columns in which we are not interested. Moreover, because example
values are completely arbitrary, we can just specify variable names for them, as
shown in Figure C.2(c). Finally, we can also leave out the example values entirely, as
shown in Figure C.2(d), and just specify a P. under the columns to be retrieved.

To see how retrieval queries in QBE are similar to the domain relational calculus,
compare Figure C.2(d) with Q0 (simplified) in domain calculus as follows:

Q0 : { uv | EMPLOYEE(qrstuvwxyz) and q=‘John’ and r=‘B’ and s=‘Smith’}

DEPARTMENT

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

EMPLOYEE

DEPT_LOCATIONS

Dnumber Dlocation

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

Essn Pno Hours

DEPENDENT

Essn Dependent_name Sex Bdate Relationship

Dname Dnumber Mgr_ssn Mgr_start_date

Figure C.1
The relational schema of Figure 3.5
as it may be displayed by QBE.
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EMPLOYEE(a)

(b)

(c)

(d)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John B Smith _123456789 P._9/1/60 P._100 Main, Houston, TX _M _25000 _123456789 _3

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John B Smith P._9/1/60 P._100 Main, Houston, TX

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John B Smith P._X P._Y

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John B Smith P. P.

Figure C.2
Four ways to specify the query Q0 in QBE.

We can think of each column in a QBE template as an implicit domain variable;
hence, Fname corresponds to the domain variable q, Minit corresponds to r, ..., and
Dno corresponds to z. In the QBE query, the columns with P. correspond to variables
specified to the left of the bar in domain calculus, whereas the columns with con-
stant values correspond to tuple variables with equality selection conditions on
them. The condition EMPLOYEE(qrstuvwxyz) and the existential quantifiers are
implicit in the QBE query because the template corresponding to the EMPLOYEE
relation is used.

In QBE, the user interface first allows the user to choose the tables (relations)
needed to formulate a query by displaying a list of all relation names. Then the tem-
plates for the chosen relations are displayed. The user moves to the appropriate
columns in the templates and specifies the query. Special function keys are provided
to move among templates and perform certain functions.

We now give examples to illustrate basic facilities of QBE. Comparison operators
other than = (such as > or ≥) may be entered in a column before typing a constant
value. For example, the query Q0A: List the social security numbers of employees who
work more than 20 hours per week on project number 1 can be specified as shown in
Figure C.3(a). For more complex conditions, the user can ask for a condition box,
which is created by pressing a particular function key. The user can then type the
complex condition.1

1Negation with the ¬ symbol is not allowed in a condition box.
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For example, the query Q0B: List the social security numbers of employees who work
more than 20 hours per week on either project 1 or project 2 can be specified as shown
in Figure C.3(b).

Some complex conditions can be specified without a condition box. The rule is that
all conditions specified on the same row of a relation template are connected by the
and logical connective (all must be satisfied by a selected tuple), whereas conditions
specified on distinct rows are connected by or (at least one must be satisfied).
Hence, Q0B can also be specified, as shown in Figure C.3(c), by entering two dis-
tinct rows in the template.

Now consider query Q0C: List the social security numbers of employees who work on
both project 1 and project 2; this cannot be specified as in Figure C.4(a), which lists
those who work on either project 1 or project 2. The example variable _ES will bind
itself to Essn values in <–, 1, –> tuples as well as to those in <–, 2, –> tuples. Figure
C.4(b) shows how to specify Q0C correctly, where the condition (_EX = _EY) in the
box makes the _EX and _EY variables bind only to identical Essn values.

In general, once a query is specified, the resulting values are displayed in the template
under the appropriate columns. If the result contains more rows than can be dis-
played on the screen, most QBE implementations have function keys to allow scroll-
ing up and down the rows. Similarly, if a template or several templates are too wide to
appear on the screen, it is possible to scroll sideways to examine all the templates.

A join operation is specified in QBE by using the same variable2 in the columns to
be joined. For example, the query Q1: List the name and address of all employees who

2A variable is called an example element in QBE manuals.

WORKS_ON

(a) Essn Pno Hours

P. > 20

WORKS_ON

(b) Essn Pno Hours

P. _PX  _HX

_HX > 20 and (PX = 1 or PX = 2)

CONDITIONS

WORKS_ON

(c) Essn Pno Hours

P. > 201
P. > 202

Figure C.3
Specifying complex conditions
in QBE. (a) The query Q0A. 
(b) The query Q0B with a 
condition box. (c) The query
Q0B without a condition box.
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WORKS_ON
(a) Essn Pno Hours

P._ES 1
P._ES 2

WORKS_ON
(b) Essn Pno Hours

P._EX 1
P._EY 2

_EX = _EY

CONDITIONS

Figure C.4
Specifying EMPLOYEES who work
on both projects. (a) Incorrect
specification of an AND condition.
(b) Correct specification.

work for the ‘Research’ department can be specified as shown in Figure C.5(a). Any
number of joins can be specified in a single query. We can also specify a result table
to display the result of the join query, as shown in Figure C.5(a); this is needed if the
result includes attributes from two or more relations. If no result table is specified,
the system provides the query result in the columns of the various relations, which
may make it difficult to interpret. Figure C.5(a) also illustrates the feature of QBE
for specifying that all attributes of a relation should be retrieved, by placing the P.
operator under the relation name in the relation template.

To join a table with itself, we specify different variables to represent the different ref-
erences to the table. For example, query Q8: For each employee retrieve the employee’s
first and last name as well as the first and last name of his or her immediate supervisor
can be specified as shown in Figure C.5(b), where the variables starting with E refer
to an employee and those starting with S refer to a supervisor.

C.2 Grouping, Aggregation, and Database
Modification in QBE

Next, consider the types of queries that require grouping or aggregate functions. A
grouping operator G. can be specified in a column to indicate that tuples should be
grouped by the value of that column. Common functions can be specified, such as
AVG., SUM., CNT. (count), MAX., and MIN. In QBE the functions AVG., SUM., and
CNT. are applied to distinct values within a group in the default case. If we want
these functions to apply to all values, we must use the prefix ALL.3 This convention
is different in SQL, where the default is to apply a function to all values.

3ALL in QBE is unrelated to the universal quantifier.
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Figure C.6(a) shows query Q23, which counts the number of distinct salary values in
the EMPLOYEE relation. Query Q23A (Figure C.6(b) counts all salary values, which
is the same as counting the number of employees. Figure C.6(c) shows Q24, which
retrieves each department number and the number of employees and average salary
within each department; hence, the Dno column is used for grouping as indicated by
the G. function. Several of the operators G., P., and ALL can be specified in a single
column. Figure C.6(d) shows query Q26, which displays each project name and the
number of employees working on it for projects on which more than two employees
work.

QBE has a negation symbol, ¬, which is used in a manner similar to the NOT EXISTS
function in SQL. Figure C.7 shows query Q6, which lists the names of employees
who have no dependents. The negation symbol ¬ says that we will select values of
the _SX variable from the EMPLOYEE relation only if they do not occur in the
DEPENDENT relation. The same effect can be produced by placing a ¬ _SX in the
Essn column.

Although the QBE language as originally proposed was shown to support 
the equivalent of the EXISTS and NOT EXISTS functions of SQL, the QBE imple-
mentation in QMF (under the DB2 system) does not provide this support. Hence,
the QMF version of QBE, which we discuss here, is not relationally complete.
Queries such as Q3: Find employees who work on all projects controlled by depart-
ment 5 cannot be specified.

EMPLOYEE(a)

(b)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno
_FN

Research

P. _FN _LN _Addr

_DX

_LN _Addr _DX

DEPARTMENT

Dname Dnumber Mgrssn Mgr_start_date

RESULT

P. _E1 _E2 _S1

RESULT
_S2

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno
_E1 _E2 _Xssn

_S1 _S2 _Xssn

Figure C.5
Illustrating JOIN and result relations in QBE. (a) The query Q1. (b) The query Q8.
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EMPLOYEE(a)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

P.CNT.

EMPLOYEE(b)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

P.CNT.ALL

EMPLOYEE(c)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

P.AVG.ALL P.G.P.CNT.ALL

PROJECT(d)

Pname Pnumber Plocation

_PXP.

Dnum

WORKS_ON

Essn Pno Hours

P.CNT.EX G._PX

CNT._EX > 2

CONDITIONS

Figure C.6
Functions and grouping in QBE. (a)
The query Q23. (b) The query Q23A.
(c) The query Q24. (d) The query Q26.

There are three QBE operators for modifying the database: I. for insert, D. for delete,
and U. for update. The insert and delete operators are specified in the template col-
umn under the relation name, whereas the update operator is specified under the
columns to be updated. Figure C.8(a) shows how to insert a new EMPLOYEE tuple.
For deletion, we first enter the D. operator and then specify the tuples to be deleted
by a condition (Figure C.8(b)). To update a tuple, we specify the U. operator under
the attribute name, followed by the new value of the attribute. We should also select
the tuple or tuples to be updated in the usual way. Figure C.8(c) shows an update

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

P. P. _SX

DEPENDENT

Essn Dependent_name Sex Bdate Relationship
_SX

Figure C.7
Illustrating negation by the query Q6.
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EMPLOYEE(a)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

RichardI. MariniK M 37000 987654321 4653298653 30-Dec-52 98 Oak Forest, Katy, TX

EMPLOYEE(b)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

D. 653298653

EMPLOYEE(c)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

John Smith U._S*1.1 U.4

Figure C.8
Modifying the database in QBE. (a) Insertion. (b) Deletion. (c) Update in QBE.

request to increase the salary of ‘John Smith’ by 10 percent and also to reassign him
to department number 4.

QBE also has data definition capabilities. The tables of a database can be specified
interactively, and a table definition can also be updated by adding, renaming, or
removing a column. We can also specify various characteristics for each column,
such as whether it is a key of the relation, what its data type is, and whether an index
should be created on that field. QBE also has facilities for view definition, authoriza-
tion, storing query definitions for later use, and so on.

QBE does not use the linear style of SQL; rather, it is a two-dimensional language
because users specify a query moving around the full area of the screen. Tests on
users have shown that QBE is easier to learn than SQL, especially for nonspecialists.
In this sense, QBE was the first user-friendly visual relational database language.

More recently, numerous other user-friendly interfaces have been developed for
commercial database systems. The use of menus, graphics, and forms is now
becoming quite common. Filling forms partially to issue a search request is akin to
using QBE. Visual query languages, which are still not so common, are likely to be
offered with commercial relational databases in the future.
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